Leveraging Large-scale Multimedia Datasets to Refine Content Moderation Models

Ioannis Sarridis, Christos Koutlis, Olga Papadopoulou, and Symeon Papadopoulos

Media Analysis, Verification and Retrieval Group (MeVer) https://mever.gr
CERTH-ITI

Content Moderation

CM importance:

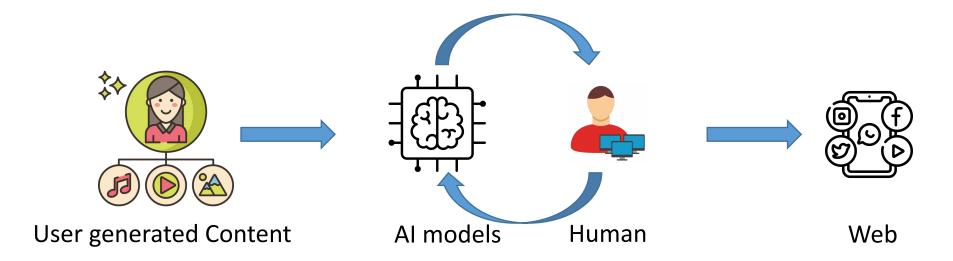
Protect platforms' audience from harmful content

CM in popular platforms:

Non-transparent systems comprising AI models and human moderators

CM in decentralized platforms (e.g., MediaVerse):

Transparency in terms of policies and AI systems



Al models reliability

Why human annotators are still necessary?

https://cloud.google.com/vision

Motivations and Contributions

Motivations:

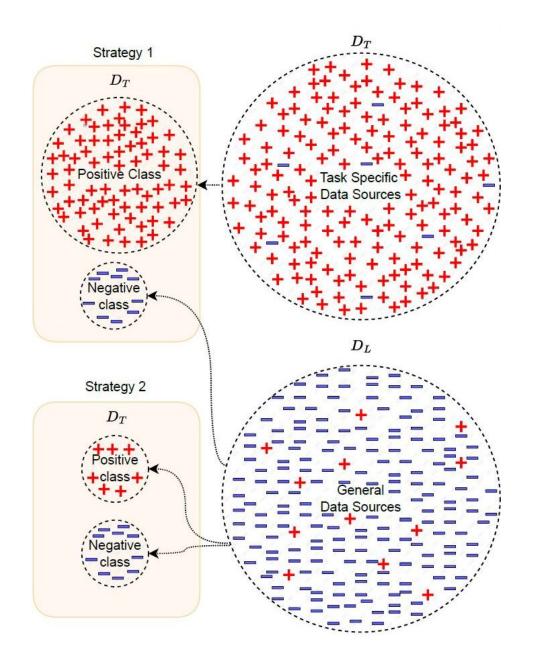
- Lack of adequate task-specific training data
- Manually annotation impact on the annotators' emotional well-being

Contributions:

- A framework for
 - collecting and annotating task-specific content moderation data
 - minimizing the human annotators' involvement
- Consideration of two model adaptation strategies

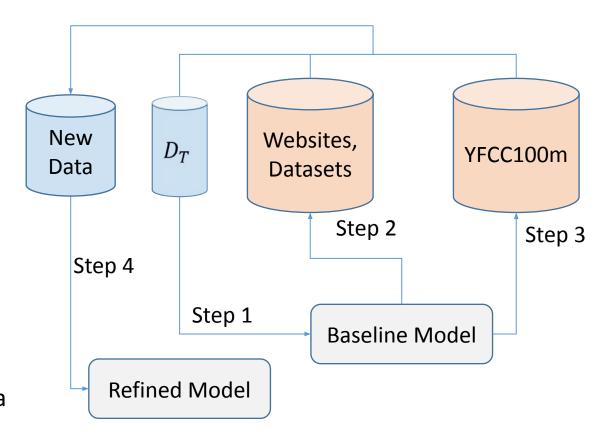
Model adaptation strategies

- Task-specific data sources D_T : websites, datasets, etc.
- General data sources D_L : Large public multimedia datasets
- Strategy 1:
 - Positive Data: Task-specific data sources
 - Negative Data: General data sources
 - Task: NSFW detection
- Strategy 2:
 - Positive Data: General data sources
 - Negative Data: General data sources
 - Task: Disturbing content detection



Framework – Strategy 1 – NSFW

- Step 1. Train a baseline model utilizing existing task-specific datasets
- Step 2. Expand positive data: web (e.g., pornography websites) and datasets (e.g., NudeNetData)
- **Step 3**. Expand negative data: YFCC100m samples classified as positive by the baseline model (i.e., hard-negatives)
- Step 4. Retrain the model utilizing the new training data

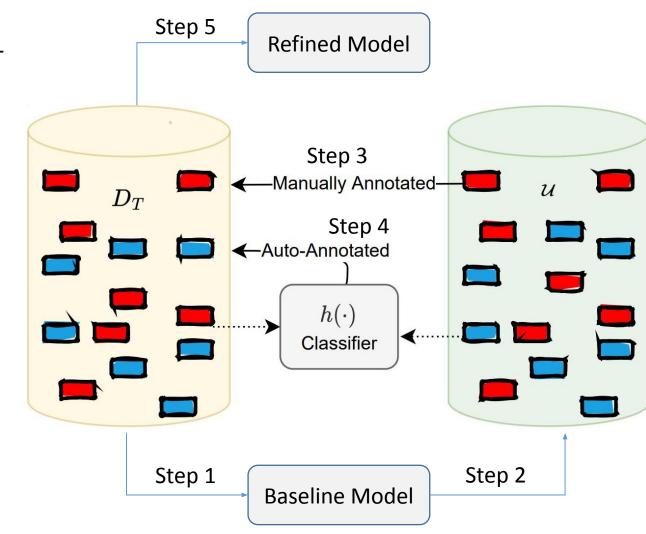


Framework – Strategy 2 – Disturbing Content

- Step 1. Train a baseline model utilizing existing task-specific datasets (i.e., D_T)
- Step 2. Keep the YFCC100m samples classified as positive by the baseline model (i.e., \mathcal{U})
- Step 3. Manually annotate a few samples per class (i.e., \mathcal{M})
- **Step 4**. Auto-annotate $\mathcal U$ samples

$$s_{i,j} = rac{f^l(\mathbf{M}_i)f^l(\mathbf{U}_j)}{||f^l(\mathbf{M}_i)||\;||f^l(\mathbf{U}_j)||}$$
 & radius-NN (i.e., $h(\cdot)$)

 Step 5. Retrain the model utilizing the new training data



Experimental Setup

Datasets:

NSFW: Pornography-2k

Disturbing content: DID

NSFW task-specific data source: NudeNetData

General data source: YFCC100m

Dataset	Samples	Positive	Negative	Source
Pornography-2k	2000 videos	1000	1000	websites
NudeNetData	713,857 images	483,495	230.362	websites
DID	5401 images	2043	3358	websites & UCID [34]
YFCC100m	99.2M images & 0.8m videos	-	-1	Flickr

Model Architecture: EfficientNet-b1

Performance evaluation:

Accuracy on Pornography-2k frames and videos

Accuracy on DID images

Results

Fully automated annotation

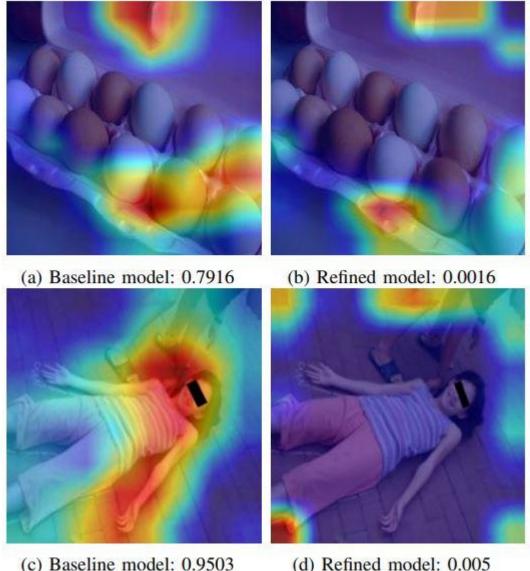
Method	Pornography-2k		YFCC100m
Wethod	frames	videos	Trectoom
VGG-16 + Bi-RNN [38]	-	95.33%	= 3
Motion - Optical Flow [5]	-	96.4%	<u>-</u> :
Inter-intra Joint Representation [39]	-	96.88%	- 9)
AttM-CNN-Porn [19]	-	97.1%	-0
FSC [40]	_	97.15%	<u>~</u> n
Baseline (EfficientNet-b1 @ D_T)	92.84%	96.38%	0%
CM-Refinery	95.71%	97.7%	98.76%

TABLE II: Performance comparison on D_T : Pornography-2k.

Human exposure to harmful data reduced by x13.4

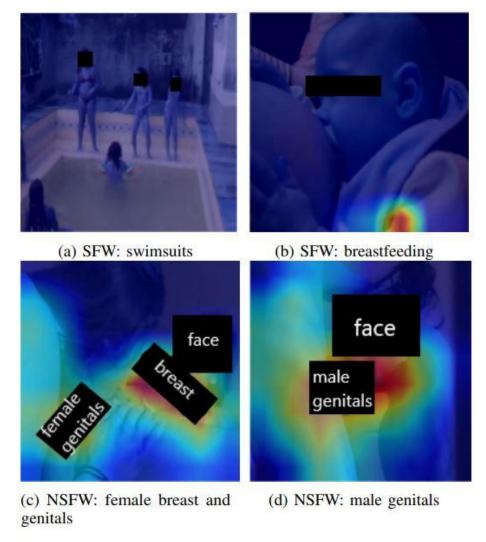
Method	DID	YFCC100m
Baseline (EfficientNet-b1 @ D_T)	93.06%	0%
CM-Refinery (w/o diversity criterion)	94.44%	73.03%
CM-Refinery	95%	79.49%

TABLE III: Results of conducted experiments on D_T : DID.



(d) Refined model: 0.005

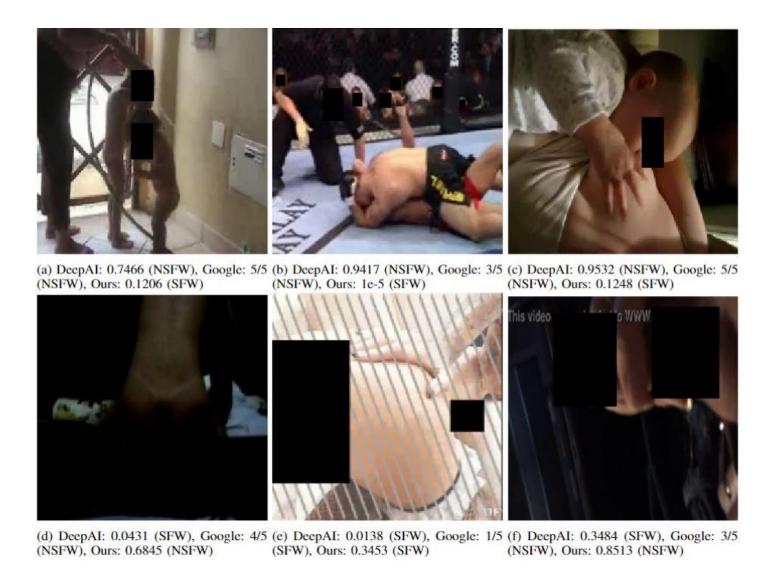
Qualitative analysis



(a) Non-disturbing: dish with (b) Non-disturbing: raw meat red sauce (c) Disturbing: blood (d) Disturbing: severe wound

The manually assigned labels describe what the images depict.

Refined Model vs Commercial Services



Future Work

- How the subjective nature of content moderation affects the AI models?
 - ☐ Few-shot approaches

- How the AI models can deal with the policy changes?
 - ☐ Frameworks that consider the policy changes

- How the bias in AI models affects their decisions?
 - ☐ Assess and mitigate bias in content moderation AI models

Thank you!

Media Analysis, Verification and Retrieval Group (MeVer)

