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Executive Summary 

In this deliverable, we report the work that has been conducted in the context of MediaVerse WP3: “Next 

Generation Content Management, Understanding and Interlinking” during the last period of the project. First, 

we document the development of the features of a variant of the official MediaVerse node, called Media Asset 

Annotation and Management (MAAM). This section includes the ability to create user-defined object detection 

and retrieval models that will be integrated in the MAAM fork. We also report the model-related improvements 

and additions in the Media Annotation Service as well as the final form of the recommendations and retrieval 

technologies developed within MediaVerse. The reported work has taken place until M30 of the project 

concluding the developments regarding media annotation and recommendation functionalities. 

More precisely, we elaborate on the annotation models that act on uploaded assets through the MAAM fork to 

provide metadata, its visual similarity feature provided for retrieval purposes as well as a user-friendly model 

creation approach, an altered version of which will substitute the current underlying model of the visual similarity 

and retrieval feature. Additionally, we report on a novel Internet image meme classification model developed to 

detect multi-modal hate speech and a novel model compression methodology that we developed in order to 

increase the Media Annotation Service efficiency. Moreover, we present a new saliency detection model for 360 

content and improvements on the face blurring model that provide all updates included in the latest version of 

the Media Annotation Service. Finally, we elaborate on the experimental results that lead to the final version of 

the cross-modal retrieval and recommendations modules. In particular, for retrieval technology we present 

experiments on new datasets and an alternative architecture to CLIP as an embedding technique, while for the 

recommender system, we conduct quantitative analysis and we present two testing setups. 
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1 Introduction 

The main objective of deliverable D3.3 is to describe the updates conducted in the framework of WP3 tasks that 

lead to the final version of MediaVerse components, such as the Media Asset Annotation and Management 

(MAAM) platform, the Media Annotation Service, and the Content Retrieval and Recommendation functionality. 

The motivation behind MAAM is to provide a specialised variant of the official MediaVerse node that can handle 

media annotations and asset organisation requirements more effectively. The current approach for visual 

concept similarity and retrieval in MAAM utilises feature vectors extracted from CLIP and applied on the whole 

image. The observation that in the current implementation semantically-only correlated images are returned in 

high rank and the fact that CLIP is pre-trained on rich images in terms of objects and semantics which makes it 

produce less informative representations for single-object images, motivated the development of a new region-

based feature extraction retrieval process utilising a model trained on single-object images. 

Regarding the Media Annotation Service, we developed a new model for fine-grained image meme classification 

as a follow-up from deliverable D3.2 - Content Discovery and Recommendation, Annotation and Adaptation 

Framework in which we reported the development of a meme detection model. The new model is trained to 

detect hate speech in the multi-modal setting of image macros and provides the assets detected as Internet 

image memes with an additional label (either being hateful or not) that can then be utilised for automatic flagging 

or moderation. Additionally, given that the service hosts a big number of models most of which are heavy, we 

developed a new model compression methodology with state of the art performance and applied it in some of 

the MediaVerse models leading to considerable computational gains with little drop in accuracy. We also 

developed a new saliency detection methodology that can be applied to images and both regular and 360 videos. 

The utility of this functionality is to help users obtain information about the areas of their assets that attract 

visual attention. This modality can support users to make better decisions about the areas that are suitable for 

content placement, such as text and buttons. Finally, we report the improvement actions undertaken to enhance 

the performance of the face blurring module. The initial version of the module was characterised by low time 

efficiency. Hence, we incorporated three modifications that resulted in a four-fold reduction in processing time. 

We also continued working on the retrieval capabilities of MediaVerse via a multimodal perspective, allowing 

users to retrieve MV assets of different modality (texts or images) with respect to their queries based on 

semantically relevance. The goal has been to improve the user experience by suggesting relevant and novel 

assets to MediaVerse users. Most modern recommendation systems leverage the past behaviour of users to 

recommend an asset that a user has not seen but another user with close interests has. In MediaVerse, however, 

we avoid the central monitoring of user activities; therefore, we describe our implementation of a recommender 

system that relies on assets posted by the same user, bypassing the need to centralise user behavior logging on 

the platform. Our recommender system relies on the semantic similarity of user’s previous posts to help the user 

discover similar novel assets. 
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2 Media Asset Annotation and Management (MAAM) 

MAAM is a specialised variant of the official MediaVerse node designed specifically for managing and utilising 

media annotations. The improvements made to the MV nodes in MAAM revolve around how media asset 

annotations are handled, such as changes to the indexing process and the incorporation of annotations into asset 

retrieval functions. In addition, MAAM supports retrieval functionality based on visual similarity combined with 

annotation filters, which can help with asset organisation. With a range of use cases in mind, MAAM has been 

designed to be flexible and adaptable, capable of handling a variety of annotation and asset organisation needs. 

It is important to note that while MAAM is a fork of the official MediaVerse node, it is still able to participate in 

the MediaVerse network as long as it adheres to the API response structure expected by other nodes. In that 

sense, MAAM shows that the official MediaVerse node project can be adopted by organisations with different 

needs and tailored according to them, while users of these forks can take advantage of the core functionalities 

of the MediaVerse network. 

2.1 MAAM Architecture 

MAAM, like the official MediaVerse node, is a service-oriented solution, consisting of three loosely interrelated 

services: the Digital Asset Management service (DAM), the Media Annotation Service, and the Near-Duplicate 

Detection (NDD) service. Figure 1 presents an overview of MAAM architecture and the connections between the 

three services.  

The DAM service is the centrepiece of the MAAM platform, as it offers a robust set of core functionalities, ranging 

from user authentication and authorization to asset organization. Its presentation layer consists of a React-based 

user interface (UI) that provides a user-friendly and intuitive interface for accessing MAAM main functionalities. 

The business logic is implemented by a Spring-based application that follows the Model-View-Controller (MVC) 

architecture pattern. The persistence layer of MAAM is responsible for storing and maintaining the digital assets, 

their associated metadata and any other entity needed in the application. This layer includes two solutions: 

PostgreSQL and Elasticsearch. PostgreSQL is an efficient relational database management system, which is used 

as the primary application storage, replacing MongoDB that is used in the official MediaVerse nodes. The reason 

for that transition is that MAAM is designed as a tool for user-based media annotations that requires the storage 

and management of several relations between entities. That makes a relational database the appropriate choice 

for our needs, as relational databases ensure the consistency of relations at the storage layer, while in noSQL 

databases relation constraints must be implemented at application level. 

Elasticsearch, on the other hand, serves as a search and analytics engine that enables efficient searching of digital 

assets. The DAM leverages the Elasticsearch ability to perform full-text search, allowing users to find assets based 

on keywords and phrases contained in the metadata. In addition, the aggregation feature of Elasticsearch is used 

for faceted search, based on specific attributes such as asset type, upload time, annotation type, etc. In addition, 

Elasticsearch supports advanced and sophisticated search functionalities, such as k-nearest neighbour (kNN) 

search based on dense feature vectors generated by the Media Annotation Service.  

The Media Annotation Service is responsible for hosting and managing the AI annotation models and it is a critical 

component of the platform as it provides unique features that differentiate MAAM from other asset 

management tools. The Media Annotation Service is based on NVIDIA Triton Inference Server, which provides a 

flexible and scalable solution for deploying AI models in a production environment. Triton can host AI models 

implemented in most of the major frameworks, such as TensorFlow, PyTorch, ONNX, etc., making MAAM easily 
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extensible with new state-of-the art models. By leveraging Triton, the Media Annotation Service provides an 

efficient solution for running AI models, making it possible to perform almost real-time annotation of media 

assets as these are uploaded to the platform.  

The communication between the DAM service and the Media Annotation Service is facilitated by gRPC1, a high-

performance framework for remote procedure calls. In the context of the MAAM platform, this asynchronous 

communication is particularly important, as the Media Annotation Service hosts multiple AI models with varying 

levels of complexity and processing requirements. The use of gRPC enables the DAM service to send multiple 

assets to the Media Annotation Service for annotation, without waiting for the annotation process to complete. 

The Media Annotation Service can perform the annotation in parallel, without blocking the overall asset 

management process and affecting its performance. As each asset is annotated by one of the supported models, 

the results are sent back to the DAM and the asset’s metadata are updated asynchronously. 

The Near-Duplicate Detection (NDD) service offers reverse search capabilities that enable users to quickly 

identify and remove duplicate assets from their media collections. NDD is based on our previous work for 

efficient video retrieval (Kordopatis-Zilos et al., 2022) and provides two key functionalities: image and video 

indexing and searching. The former function analyses the media asset's visual content provided and adds them 

to the corresponding index. The latter function searches the built index for near-duplicates to a query multimedia 

item and ranks the retrieved results based on their similarity to the query. The service provides calls to add 

images and videos to the relevant indexes using explicit URLs, search the index for near-duplicates given a query 

multimedia item, and create multimedia item collections for more efficient organisation and searching of near-

duplicates. To enable this, the NDD service follows a service-oriented architecture, consisting of multiple modular 

services for feature extraction, indexing, and searching. Communication between the NDD service and other 

MAAM platform components is facilitated via a REST API exposed by the NDD service. The similarity calculation 

options are provided to the user to retrieve near-duplicates based on their requirements. 

 

 

Figure 1: Architecture of the Media Asset Annotation and Management platform 

                                                           
1 https://grpc.io/  

https://grpc.io/
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2.2 MAAM Features 

As the main purpose of MAAM is to leverage automatic annotations for asset organisation and retrieval, its main 

features include the core models used in the annotation procedure as well as a visual-based retrieval with the 

help of a state of the art multimedia representation model. By applying annotations as filters in asset search and 

retrieval, users can easily find content in large-scale collections that fits their needs and organise it in semantically 

coherent groups (the so-called Projects, in MAAM). In the same way, using already identified assets, the visual 

similarity feature can be used to further expand projects with assets that are conceptually similar. As already 

mentioned, for the asset annotation process, several models have been integrated to provide information 

ranging from objects and actions recognized in assets, to descriptive text captions that provide a user-friendly 

description of the assets.   

2.2.1 Automatic Media Annotation 

Automatic image captioning: Captioning can greatly enhance image retrieval by generating a free-text 

description for each image, providing additional context for the visual content. We use OFA2, a state-of-the-art 

captioning model, and the produced text is indexed in Elasticsearch. Figure 2 shows three asset cards with the 

corresponding generated captions. By indexing these captions, we are able to retrieve assets even if the user has 

not provided any relevant metadata or textual description. For example, a user can retrieve the first asset at the 

left of the figure, which depicts gargoyles, even though the uploader provided no such information. In addition, 

automatic captions can be used as alternative text for the uploaded assets and therefore, improve the platform's 

accessibility by fulfilling the WCAG2.0 requirements3. It is worth mentioning that for the same examples, 

Microsoft’s O3654 produces the following: "We are unable to automatically generate alt text for this picture". 

 

Figure 2: Examples of image captions and annotations. 

Object detection: The object detection model is used to identify objects within images and video frames. We use 

the Faster R-CNN (Ren et al., 2015) with an InceptionV2 backbone (Ioffe & Szegedy, 2015), trained on the 80 

                                                           
2 https://github.com/OFA-Sys/OFA  
3 https://www.w3.org/WAI/alt/ 
4 https://www.office.com/  

https://github.com/OFA-Sys/OFA
https://www.w3.org/WAI/alt/
https://www.office.com/
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object classes of the MS COCO dataset5. In case of images, we detect and store the bounding box containing the 

corresponding object, while in videos we also provide time information. In both cases, a confidence score is also 

included. If a user wants to find images containing a specific object, they can filter assets by using the objects 

filter and the platform will return all images that have been annotated with that label.  

Action recognition: For action recognition in videos, we consider the SlowFast R50 model (Feichtenhofer et al., 

2019) trained on the Kinetics400 dataset. For images, since Kinetics400 contains videos and most action 

recognition models use 3D CNNs, we used a ResNet152 model (He et al., 2016) with the TSN approach (Wang et 

al., 2016) for training at frame level. At inference, we directly apply the frame level classifier to the images. In 

Figure 3 we provide three video examples with the corresponding recognized actions.  

Face Detection and Recognition: For face detection, we consider the VGGFace2 model (Cao et al., 2018) trained 

on about 9k faces of the VGGFace2 dataset6. In case of videos, we apply the same model on randomly selected 

key-frames. 

Content Moderation: The MAAM platform employs two moderation models to filter content, ensuring the 

platform remains safe and appropriate for all users. We trained two moderation models that are able to detect 

disturbing and Not Safe for Work (NSFW) content. For images, the moderation results, including a confidence 

score, are stored and indexed. For videos, the models are applied to key-frames and a video is considered NSFW 

or disturbing if at least one scene receives such a tag. At retrieval time, users have the option to include or 

exclude that type of content, while the UI uses these tags to blur the corresponding assets to prevent user 

exposure to potentially inappropriate content. For example, in Figure 4, the user has enabled the NSFW filter to 

get only those that have been tagged as such. Users can choose to reveal the actual content at their own 

discretion by clicking the reveal button at the upper right corner of each asset. 

 

Figure 3: Examples of video assets with the corresponding recognized actions 

                                                           
5 https://cocodataset.org/#home 
6 https://paperswithcode.com/dataset/vggface2-1  

https://cocodataset.org/#home
https://paperswithcode.com/dataset/vggface2-1
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Figure 4: Assets flagged as NSFW 

Meme Detection: For images, we determine whether they are memes or not using our previous MemeTector 

model (Koutlis et al., 2022). We apply the model to each image and the result is stored and indexed along with a 

confidence score. Figure 5 presents some examples, uploaded in MAAM. 

 

Figure 5: Examples of meme images uploaded in MAAM 

2.2.2 Visual Concept Similarity and Retrieval 

To support image similarity, we utilised the pre-trained CLIP model (Radford et al., 2021), which was trained on 

a large image-text dataset, consisting of around 400 million pairs. We used the ViT-B/32 version of the image 

encoder, which was obtained from its official GitHub repository. For each image uploaded in the DAM, MAAM 

receives from the Media Annotation Service a dense vector representation of 512 dimensions that encodes the 

semantic information of the image’s visual content. This representation is then indexed in Elasticsearch and used 

to retrieve semantically similar content through the approximate k-nearest neighbour (kNN) search feature of 

Elasticsearch. This feature can be used in conjunction with all other features of Elasticsearch, allowing kNN 

queries to be combined with free text searches, filters, and aggregations. This flexibility enhances the user 

experience by allowing users to refine further the visual similarity search results to find content of specific 

interest. In addition to global image-level similarity, we support region-based retrieval. This allows users to select 

a specific region in an image by defining a bounding box, and retrieve content that is visually similar to that region 

in a more focused manner. To achieve this, the platform extracts a dense vector representation of the selected 

region in real-time, as it does for entire images during upload. This representation is then used in the same kNN 

search process to find relevant content. Figure 6 illustrates an example of the visual similarity feature in action. 

Using the region selection facility of MAAM, the user can focus the retrieval on the rainbow flag. By selecting an 
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image region containing a rainbow flag, MAAM retrieves assets containing the same flag since the dense vector 

extracted with CLIP encodes the meaning of the images and regions. 

 

Figure 6: Retrieval of assets based on visual similarity 

2.3 User-generated Models for Object Detection and Content Retrieval 

In this section, we present a pipeline that lets users create custom models detecting user-selected objects in 

images. This builds on the work of deliverable D3.2 - Content Discovery and Recommendation, Annotation and 

Adaptation Framework7 regarding the non-AI-expert model-building module for the face recognition and image 

classification tasks. In addition, the proposed process fits to the visual concept retrieval feature (presented in 

Section 2.2.2) enabling the users to create their own retrieval models for specific concepts, by having the 

potential to overcome some crucial shortcomings of the current implementation. 

2.3.1 Objective 

The purpose of this work is to provide the MediaVerse user with a tool that enables efficient and effective 

creation of personal models for the detection of objects (specific to the user’s needs) in images. The need for 

simplicity both in terms of computations and user background (no machine learning skills are required) led our 

research to a similarity-based approach between anchor images depicting the object of interest and the 

candidate images existing in a database. All experiments, simulations and results can be found in the following 

GitHub repository: https://github.com/ckoutlis/mv-model-building-gui. 

2.3.2 Proposed Pipeline 

The proposed pipeline comprises the following steps: 

                                                           
7 https://mediaverse-project.eu/wp-content/uploads/2022/07/D3.2-V1.0.pdf    

https://github.com/ckoutlis/mv-model-building-gui
https://mediaverse-project.eu/wp-content/uploads/2022/07/D3.2-V1.0.pdf
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● The user provides the system with a small number 𝑛 of images depicting the object of interest in a central 

position. 

● Prototypes are generated by storing the feature vectors extracted by a pre-trained model. 

● For each candidate image one feature vector is extracted for the whole image and 𝑛𝑏 more feature 

vectors corresponding to each bounding box (e.g., proposed by a region proposal network) are extracted 

using the same pre-trained model. 

● Maximum similarity between each prototype and candidate feature vector is appropriately thresholded 

to decide on the presence of the object or utilised for ranking candidates in a retrieval setting. 

2.3.3 Experiments on the MS-COCO Dataset 

We consider the validation set of the MS-COCO8 dataset (Lin & Maire, 2014) to assess the effectiveness of the 

proposed methodology. More precisely, we perform experiments on the first 16 object categories using two pre-

trained feature extractors, namely the CLIP (Radford et al., 2021) ViT-L/149 pre-trained on ~400M image-text 

pairs and the ViT base (Dosovitskiy et al., 2020) pre-trained on ImageNet21k (Deng et al., 2009) obtained from 

the timm10 library. Additionally, we consider the simplistic visual similarity measure UQI (computed between raw 

images) as baseline. For each category, we randomly select 𝑛 = 10 object instances as prototypes by cropping 

the corresponding bounding box if it is of sufficient size (at least 120 pixels width and height). Then, the feature 

extractors process the cropped parts to obtain their representations. Consequently, these prototypes are 

compared against 1000 randomly selected candidate images to calculate the similarities through the cosine 

similarity metric. Most of the candidate images do not contain the objects of interest thus for the evaluation we 

consider the balanced accuracy metric that accounts for class imbalances. In the results section, we compute this 

score upon different thresholds and report the best performance along with the corresponding threshold. 

2.3.4 Use Cases 

In addition to the experiments on MS-COCO, we consider three real-world use cases for which we perform and 

assess the proposed pipeline. The three objects are: 

● IBM logo, which is considered helpful in contexts involving public communication about popular brands; 

● Flags, which is considered helpful in journalistic investigations about public events like summits; 

● Swastika, which is considered helpful in journalistic and computational social science investigations 

about white supremacist and extreme right groups. 

In order to acquire relevant images, we searched through Google’s search engine the corresponding terms. After 

downloading ~300-400 images per object with the help of Image Downloader chrome extension11 we first 

conducted deduplication with fdupes12 and then manually cleaned the rest from irrelevant or low resolution 

content. Finally, we split each set to anchor and test images. The anchor images (from which the prototype 

feature vectors are extracted) are between 7 and 17 and the test images (positive candidates) are between 30 

and 259 for each object. Furthermore, we consider a set of images that do not contain any of the three objects 

as negative candidates. We wanted to provide hard negative examples to our system so we performed the same 

                                                           
8 https://cocodataset.org/  
9 https://github.com/openai/CLIP  
10 https://github.com/huggingface/pytorch-image-models  
11 https://chrome.google.com/webstore/detail/image-downloader/cnpniohnfphhjihaiiggeabnkjhpaldj  
12 https://manpages.ubuntu.com/manpages/bionic/man1/fdupes.1.html  

https://cocodataset.org/
https://github.com/openai/CLIP
https://github.com/huggingface/pytorch-image-models
https://chrome.google.com/webstore/detail/image-downloader/cnpniohnfphhjihaiiggeabnkjhpaldj
https://manpages.ubuntu.com/manpages/bionic/man1/fdupes.1.html
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collection process using the search terms “symbol”, “logo”, “air” and “countryside” which result in images with 

similar but distinct content. In Figures 7-9 the anchor images per object are illustrated. 

2.3.5 Results 

In Table 1, we illustrate the performance of our pipeline in terms of balanced accuracy per object category and 

feature extractor. It is observed that ViT outperforms CLIP and the baseline UQI methods in all three scenarios 

in which the similarity is computed (1) only based on the whole candidate image, (2) only the object-level 

bounding boxes and (3) both. In addition, ViT performs best when box similarity is considered while CLIP and UQI 

perform best when only the whole image’s similarity is computed. In Annex I, more detailed figures are provided 

(Figures A.1-A.6). 

 
Figure 7: Anchor images for the IBM logo 

 
Figure 8: Anchor images for the flags category 
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Figure 9: Anchor images for the swastika category 

  



MediaVerse Project – Grant ID 957252 

Page 20 of 70 
 

Table 1: Balanced accuracy per category and feature extractor (MS-COCO) 

 cos. sim. w/ CLIP feat. cos. sim. w/ ViT feat. UQI on raw images 

 image boxes both image boxes both image boxes both 

person 0.505 0.558 0.550 0.584 0.711 0.715 0.504 0.588 0.563 

bicycle 0.701  0.800 0.800 0.723 0.785 0.775 0.505 0.513 0.513 

car 0.590 0.613 0.613 0.731 0.784 0.784 0.525 0.570 0.558 

motorcycle  0.702 0.649 0.649 0.893 0.844 0.841 0.523 0.517 0.515 

airplane 0.867 0.656 0.669 0.916 0.841 0.863 0.667 0.578 0.579 

bus 0.747 0.564 0.592 0.900 0.922 0.921 0.569 0.573 0.568 

train 0.916 0.808 0.813 0.915 0.863 0.857 0.627 0.509 0.560 

truck 0.672 0.678 0.678 0.729 0.839 0.831 0.520 0.558 0.537 

boat 0.778 0.711 0.711 0.864 0.876 0.866 0.692 0.659 0.679 

traffic light 0.623 0.669 0.669  0.794 0.764 0.752 0.502 0.543 0.521 

fire hydrant 0.918 0.778 0.778 0.821 0.887 0.883 0.515 0.513 0.510 

stop sign 0.610 0.805 0.805 0.793 0.752 0.771 0.521 0.543 0.563 

parking meter 0.835 0.750 0.750 0.750 0.750 0.750 0.549 0.562 0.562 

bench 0.557 0.589 0.589 0.646 0.671 0.674 0.581 0.563 0.556 

bird 0.808 0.539 0.537 0.730 0.794 0.793 0.580 0.515 0.544 

cat 0.890 0.778 0.778 0.889 0.900 0.900 0.503 0.504 0.501 

average 0.733 0.684 0.686 0.792 0.811 0.811 0.555 0.551 0.552 

 

Table 2 presents the average optimal threshold across MS-COCO object categories. We observe that for CLIP and 

ViT the optimal similarity threshold for verifying the object’s presence is at low levels as opposed to UQI. 

Table 2: Average optimal threshold across categories per feature extractor (MS-COCO) 

 cos. sim. w/ CLIP feat. cos. sim. w/ ViT feat. UQI on raw images 

average threshold 0.250 0.125 0.681 
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Similarly, Tables 3 and 4 present the balanced accuracy and optimal threshold respectively. While the best 

performance is similar and at acceptable levels the thresholds are very different from the MS-COCO experiments. 

Table 3: Balanced accuracy per use case and feature extractor (use cases) 

 cos. sim. w/ CLIP feat. cos. sim. w/ ViT feat. UQI on raw images 

logo 0.954 0.829 0.502 

flag 0.857 0.939 0.524 

swastika 0.893 0.882 0.518 

average 0.901 0.883 0.515 

 
Table 4: Average optimal threshold across use cases per feature extractor (use cases) 

 cos. sim. w/ CLIP feat. cos. sim. w/ ViT feat. UQI on raw images 

average threshold 0.719 0.474 0.316 

 

2.3.6 Conclusions 

The proposed methodology with ViT feature extractor and considering bounding boxes in addition to the original 

image, produces very good results in terms of accuracy, but the difficulty in determining a universal optimal 

threshold makes it very challenging to deploy in the wild without loss in performance. Yet, the consideration of 

bounding box feature extraction as well as the pre-training on ImageNet21k of the ViT feature extractor seems 

to be a better alternative with respect to the current MAAM content retrieval framework, which is extracting 

features by applying CLIP on the whole candidate image. This is a good choice if someone wants to encode in 

only one vector all existing objects (irrespective of size) and at the same time low restrictions on the number of 

possible objects to be detected. However, it has two shortcomings: (1) semantically-only correlated instances 

returned in high rank; and (2) not very informative embeddings in cases of one-object images. On the other hand, 

CLIP applied on bounding boxes containing only one object is not an optimal choice as CLIP has been trained on 

images with many objects and semantics described by whole images and not just labels.13 Of course ViT pre-

trained on ImageNet21k is not a good choice for feature extraction on whole images as it has been trained on 

single-object images. ViT on candidate images bounding boxes and ViT on single-object user-provided anchor 

images is the new proposed approach for content retrieval in MAAM and is expected to work better than CLIP 

on whole image.  

                                                           
13 To address this, RegionCLIP has been proposed: https://github.com/microsoft/RegionCLIP. This is a CLIP architecture but 

trained on a different dataset containing object-description pairs rather than image-text. Moreover, CLIP and RegionCLIP do 
not produce feature vectors in the same vector space, so similarities cannot be computed between the two. 

https://github.com/microsoft/RegionCLIP
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3 New Media Understanding and Annotation Service 

In this section, we present the model additions and improvements in existing models of the Media Annotation 

Service, as well as a novel approach for model compression as a solution to the evolving number of offered AI 

models and the consequent computational resource demands. 

3.1 Image Meme Fine-grained Classification 

Here, we report the progress of T3.1 with respect to the task of image meme fine-grained classification. 

3.1.1 Introduction 

The main goal is to build a deep learning-based architecture for fine-grained classification of Internet image 

memes. The main categorisations of memes are hateful/non-hateful, offensive/non-offensive, humour type 

(humorous, sarcastic, offensive, and motivational) and sentiment (positive, negative, and neutral). Figure 10 

shows pertinent examples. The problem is expected to be better solved by multimodal means because of the 

inherent multimodal nature of image memes, but unimodal approaches have shown comparable results in 

several studies and thus should also be considered as part of an ablation analysis. Our main contribution is the 

adoption of a dual stage modality fusion approach. The first fusion stage produces feature vectors containing 

modality alignment information, which expresses the non-trivial connection between modalities in image 

memes. The second fusion stage leverages the power of a Transformer encoder to learn inter-modality 

correlations at the token level and yield an informative and discriminative representation. We also exploit 

external knowledge to provide richer input to the model’s cross attention modules as well as background image 

caption supervision as a regularising component that constrains the model from producing only task specific 

features leading to potential over-fitting. Code available on GitHub14. 

3.1.2 Methodology 

Here, we present the proposed approach to address the image meme fine-grained classification task. We 

consider a multimodal pre-trained deep neural network, for feature extraction of both image meme modalities, 

namely image and text. In addition, we incorporate external knowledge to our model by providing the predicted 

demographics of depicted people. A dual-stage modality fusion module processes the three groups of inputs i.e., 

image, text, and external knowledge. Finally, a dense layer produces the classification output and a caption 

supervision is imposed for regularisation purposes. Figure 11 presents the proposed model architecture (the 

symbol ⊗ denotes broadcastable element-wise multiplication).  

 

                                                           
14 https://github.com/ckoutlis/memefier  

https://github.com/ckoutlis/memefier
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Figure 10: Examples of image memes from different classes 
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Figure 11: Model architecture 

Modality Encoding 

Kiela et al. (2020) claim that considering two unimodally pre-trained feature extractors for image and text, 

respectively, results in worse performance compared to feature extractors trained with a multimodal objective, 

when the task of interest is multimodal in nature. Thus, for the encoding of the image and the text, we consider 

a multimodally pre-trained model, and more precisely, we opt for CLIP (Radford et al., 2021). After processing 

the image 𝑔 ∈ ℜℎ×𝑤×3 and the text 𝑥 ∈ ℵ𝐿, where ℎ and 𝑤 are the width and height of the image while 𝐿 is the 

text’s number of words, by CLIP’s image and text encoders, we get the image embedding 𝑜𝑔 ∈ ℜ𝑑 and its patch 

embeddings {𝑜𝑖
𝑔

}
𝑖=1

𝑛𝑔 ∈ ℜ𝑛𝑔×𝑑 as well as the text embedding 𝑜𝑥 ∈ ℜ𝑑 and its token embeddings {𝑜𝑖
𝑥}𝑖=1

𝑛𝑥 ∈

ℜ𝑛𝑥×𝑑, where 𝑛𝑔 and 𝑛𝑥 are the number of patches and the number of tokens, respectively. 

External Knowledge Retrieval and Encoding 

Incorporating external knowledge, on top of the given visual and textual cues, in the processing of image memes, 

is inspired by the fact that hate is mainly targeted to certain groups of the population, who are minorities or 

more vulnerable, in general (e.g., Muslims, women, etc.). Without the external knowledge retrieval module, the 

trained models decide purely based on image-text learned correlations, which neglects real world understanding 

as valuable input. Utilising such a signal hopefully creates richer feature embeddings by enabling deeper 

semantics information exchange among the modalities. Other researchers have realised this issue as well, for 

instance in (Kiela et al., 2020, p. 3) the authors mention: 
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“The definition employed here has some notable exceptions, i.e., attacking individuals/famous people is allowed 

if the attack is not based on any of the protected characteristics listed in the definition. Attacking groups 

perpetrating hate (e.g., terrorist groups) is also not considered hate. This means that hate speech detection also 

involves possibly subtle world knowledge.” 

We incorporate external knowledge to our model with the following procedure. For each image we get FairFace 

predictions15 regarding gender, race and age of all depicted persons (if any) and denote it 𝑒 ∈ ℵ3×𝑛𝑝, where 𝑛𝑝 

is the number of persons and 𝑛𝑒 = 3 × 𝑛𝑝. We then encode this information through a typical embedding layer 

which is trained along with the rest of the model and produce the corresponding embeddings {𝑜𝑖
𝑒}𝑖=1

𝑛𝑒 ∈ ℜ𝑛𝑒×𝑑. 

Fusion 

We consider a dual-stage modality fusion approach. During stage 1, we produce token-level modality 

representations that are aware of the level of alignment with the other modality. More precisely, we compute: 

𝑓𝑖
𝑔

= 𝑜𝑖
𝑔

⊗ 𝑜𝑥 

𝑓𝑖
𝑥 = 𝑜𝑖

𝑥 ⊗ 𝑜𝑔 

where ⊗ denotes element-wise multiplication, to get the fused image and text features, respectively. During 

stage 2, a Transformer encoder 𝑇(⋅) processes 𝑓𝑖
𝑔

, 𝑓𝑖
𝑥 and 𝑜𝑖

𝑒 along with a learnable classification token < 𝐶𝐿𝑆 > 

and produces the corresponding feature representations: 

[𝑟𝑐𝑙𝑠, {𝑟𝑖
𝑔

}
𝑖=1

𝑛𝑔 , {𝑟𝑖
𝑥}𝑖=1

𝑛𝑥 , {𝑟𝑖
𝑒}𝑖=1

𝑛𝑒 ] = 𝑇 ([< 𝐶𝐿𝑆 >, {𝑓𝑖
𝑔

}
𝑖=1

𝑛𝑔 , {𝑓𝑖
𝑥}𝑖=1

𝑛𝑥 , {𝑜𝑖
𝑒}𝑖=1

𝑛𝑒 ]) 

Classification 

As classification head for the hatefulness output we consider a typical fully-connected and sigmoid-activated 

layer of one unit 𝐷(𝑟𝑐𝑙𝑠). 

Caption Supervision 

In the typical multi-modal training setting, the vision encoder is likely to extract reduced image features that are 

advantageous only for the hatefulness detection, ignoring part of the background’s semantics. In this case, the 

model will probably overfit and yield spuriously good performance. In order to mitigate this potential deviation, 

we propose to consider an additional supervision signal, namely by reconstructing a description of the 

background image through a standard image captioning decoder. This will enable the vision encoder to preserve 

the image’s semantics in addition to building features pertinent to the hatefulness property. In order to achieve 

this we first crop the visual part of the image memes extracted with VPU and then consider the OFA generated 

caption as the target. Finally, a Transformer decoder is utilised to produce the caption based on the fused image 

features {𝑟𝑖
𝑔

}
𝑖=1

𝑛𝑔
. 

3.1.3 Experimental Setup 

In this section, we describe the datasets and the details of the conducted experiments. 

                                                           
15 We utilise the pretrained models provided in https://github.com/dchen236/FairFace. 

https://github.com/dchen236/FairFace
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Datasets 

● Facebook Hateful Memes (Kiela et al., 2020): This dataset has been released in the context of the Hateful 

Memes Challenge. It contains 10K image meme instances namely, 8.5K training data, 0.5K validation data 

(dev) and 1K test data. It is annotated by humans in 4 phases (filtering, meme construction, hatefulness 

rating and benign confounders). We do not use the test split for which the labels are not released, but 

we evaluate all models and report results on the dev set. 

● Memotion7k (Sharma et al., 2020): This dataset has been released in the context of a challenge at 

SemEval-2020. It contains 9871 image meme instances, i.e. 1K trial data, 6992 training data and 1879 

test data. It is annotated by humans through Amazon’s Mechanical Turk with regards to the following 

tasks: (a) sentiment prediction (negative, positive, neutral), (b) overall emotion prediction (humor, 

sarcastic, offensive, motivational) and (c) estimation of the corresponding intensities. We randomly split 

training data to training and validation sets at 90%-10%, and report results on the test data. Trial data 

are not publicly available and thus not used here. 

● MultiOFF (Suryawanshi et al., 2020): This rather small dataset contains 743 image meme instances 

manually annotated as either offensive or non-offensive. The training set has 445 images and the 

validation and test sets have 149 each.  

Baselines 

We consider three baseline models, one that processes only the image, one that processes only the text and one 

that processes both modalities: 

● image only: ResNet18 → FC(dim * 2) → FC(num_classes) 

● text only: Embedding → LSTM(dim) → FC(dim * 2) → FC(num_classes) 

● multimodal: 

○ image encoder: the image only baseline (w/o classification layer) with 2 FC on top 

○ text encoder: the text only baseline (w/o classification layer) with 2 FC on top 

○ early fusion: concatenate the above encoders’ output vectors and process them through 2 FC 

layers the last being activated by a softmax function 

Hyperparameter Grid 

For the baselines we conduct experiments for hyperparameter tuning accounting for different (i) initial learning 

rates (1e-2, 1e-3, 1e-4, 1e-5), (ii) ResNet18 visual feature extractor being pre-trained on ImageNet or not (True, 

False), (iii) number of hidden dimensions for the fully connected as well as for the LSTM (64, 128, 256) and (iv) 

number of LSTM layers (1, 3). We report the maximum performance. 

For the proposed method we consider the following hyperparameter grid: (i) initial learning rates (1e-4, 1e-5), 

(ii) number of epochs (16, 32), (iii) contribution of the caption supervision 𝛼 (see ‘Implementation details’ 

section) to the final loss function (0.2, 0.8), (iv) model dimension (512, 1024), (v) Transformer encoder settings: 

● 4 heads, 512 feedforward dimension, 1 layer 

● 16 heads, 2048 feedforward dimension, 3 layers 

(vi) Transformer decoder settings: 

● 64 input dimension, 4 heads, 64 feedforward dimension, 1 layer 

● 256 input dimension, 16 heads, 256 feedforward dimension, 3 layers 
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Implementation Details 

For the baselines, the input training images are resized to 256, then randomly cropped at 224, randomly 

horizontally flipped and finally standardised per channel using the ImageNet statistics. The validation images are 

only resized to 224 and standardised. For the text, we consider lowercasing and removing punctuation, numbers 

and double spaces. The vocabulary size is determined by the number of words having at least five occurrences 

in the corpus and the maximum sequence length by the 90% quantile of the distribution of lengths. Binary cross 

entropy is employed for the binary classification tasks and the multi-label classification tasks (e.g., Memotion7k 

task b), while categorical cross entropy is employed for the multi-class classification tasks. As optimizer we opt 

for Adam, training for 10 epochs, with batch size 128 and the learning rate is reduced by 10x at epoch 5. 

For the proposed method, we consider the specific image preprocessing pipeline provided by the CLIP model and 

the text preprocessing pipeline considered for the baselines. For the input text vocabulary, we consider the same 

approach as for the baselines while for the captions vocabulary we consider all words and the actual maximum 

sequence length. We conduct the model training using Adam optimizer, binary cross entropy loss for the 

hatefulness output and categorical cross entropy for the caption supervision. Batch size is set to 32 due to 

memory constraints. The initial learning rate is reduced by a factor of 10 after half of the training epochs. The 

two loss functions are combined as below: 

ℒ = ℒℎ𝑎𝑡𝑒 + 𝛼 ⋅ ℒ𝑐𝑎𝑝𝑡𝑖𝑜𝑛 

where 𝛼 denotes the contribution of the caption supervision, 𝓛ℎ𝑎𝑡𝑒 denotes binary cross-entropy, and 𝓛𝑐𝑎𝑝𝑡𝑖𝑜𝑛 

denotes categorical cross-entropy. 

Evaluation Protocol 

We report F1 score for Memotion7k and MultiOFF datasets and AUC for Facebook Hateful Memes dataset in 

order to be comparable with the state of the art, which uses these conventions. Additionally, we report the 

accuracy metric for all our experiments. 

3.1.4 Results 

In Table 5, we present the performance of the baseline models as well as the proposed method on the Facebook 

Hateful Memes dataset. We observe that our best configuration achieves 0.801 AUC and 0.736 accuracy, namely 

+28.8% relative improvement compared to the best baseline performance in terms of AUC. In addition, all 

experimental settings of the proposed method, exhibiting a minimum AUC of 0.673, surpass the baselines and 

the results seem very robust to hyperparameter changes as the top-5 settings exhibit a minimum variation of 

0.014 range. In Figure 12, we get a broader picture of how our method’s hyperparameters affect the results. It 

seems that learning rate is the most sensitive parameter to tune while the rest produce similar score distributions 

across different values. 
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Table 5: Baselines’ and proposed method’s performance on FBHM 

Method Accuracy AUC 

Baselines 

image 0.530 0.573 

text 0.544 0.622 

multi 0.554 0.613 

Top-5 hyperparameter settings of the proposed method 

● learning rate: 0.0001 
● epochs: 16 
● a: 0.2 
● d: 1024 
● encoder: {'h': 16, 'dff': 2048, 'L': 3} 
● decoder: {'d': 64, 'h': 4, 'dff': 64, 'L': 1} 

0.736 0.801 

● learning rate: 0.0001 
● epochs: 16 
● a: 0.8 
● d: 1024 
● encoder: {'h': 16, 'dff': 2048, 'L': 3} 
● decoder: {'d': 64, 'h': 4, 'dff': 64, 'L': 1} 

0.726 0.795 

● learning rate: 0.0001 
● epochs: 32 
● a: 0.2 
● d: 1024 
● encoder: {'h': 16, 'dff': 2048, 'L': 3} 
● decoder: {'d': 64, 'h': 4, 'dff': 64, 'L': 1} 

0.736 0.794 

● learning rate: 0.0001 
● epochs: 16 
● a: 0.2 
● d: 1024 
● encoder: {'h': 4, 'dff': 512, 'L': 1} 
● decoder: {'d': 64, 'h': 4, 'dff': 64, 'L': 1} 

0.708 0.789 

● learning rate: 0.0001 
● epochs: 32 
● a: 0.2 
● d: 1024 
● encoder: {'h': 4, 'dff': 512, 'L': 1} 
● decoder: {'d': 64, 'h': 4, 'dff': 64, 'L': 1} 

 0.708 0.789 
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Figure 12: Box plots of AUC with respect to different hyperparameter values 

Table 6 demonstrates the performance of the baseline models and the proposed method on the three tasks of 

Memotion7k. Regarding the baselines (i.e., image, text, and multimodal), inconsistency is observed between 

accuracy and F1 score while the combination of input modalities does not lead to best results in most cases. The 

latter entails the dominance of one of the two modalities in terms of exploitable information for solving the task 

of interest and it has already been demonstrated in previous papers as well (Das et al., 2020). The proposed 

method performance is better than the baselines in all tasks in terms of both accuracy and F1 score. 

Table 6: Performance of baselines and proposed method on Memotion7k (tasks a, b and c) 

Method Task a Task b Task c 

Accuracy 

image 0.560 0.703 0.474 

text 0.559 0.703 0.472 

multimodal 0.562 0.703 0.475 

proposed 0.562 0.704 0.476 

F1 

image 0.333 0.502 0.315 

text 0.350 0.481 0.279 

multimodal 0.346 0.493 0.310 

proposed 0.396 0.519 0.343 

 

In Table 7, we illustrate the performance of the proposed method and the baseline models on the MultiOFF 

dataset. We observe that image processing surpasses the text processing scores, while the combination of the 
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two modalities leads to the best outcome in terms of both accuracy and F1 score. The proposed method’s 

performance is better than the baselines in terms of accuracy while almost identical in terms of F1 score. 

Table 7: Performance of baselines and proposed method on MultiOFF 

Method Accuracy F1 

image 0.638 0.619 

text 0.571 0.508 

multimodal 0.671 0.626 

proposed 0.685 0.625 

 

3.2 Model Compression 

In this section, we present the methodologies employed for compressing Convolutional Neural Networks (CNNs) 

that we deploy through the Media Annotation Service. 

3.2.1 Knowledge Distillation Combined with Pruning 

Pruning and Knowledge Distillation (KD) constitute two widely applied approaches for compressing a neural 

network. The objective of KD is to transfer knowledge from a powerful teacher network to a smaller and faster 

one, in order to extend its performance capabilities, while pruning aims to discard the redundant parameters of 

a neural network in order to reduce its storage requirements or/and the inference time. Taking advantage of the 

capabilities of these two model compression techniques, we developed a state-of-the-art method, termed 

InDistill (Sarridis et al., 2022), that combines knowledge distillation and channel pruning in a unified framework 

for the transfer of the critical information flow paths from a heavyweight teacher to a lightweight student. Such 

information is typically collapsed in previous methods due to an encoding stage prior to distillation. On the 

contrary, InDistill leverages a pruning operation applied to the teacher's intermediate layers reducing their width 

to the corresponding student layers' width. In that way, we force architectural alignment enabling the 

intermediate layers to be directly distilled without the need of an encoding stage. Additionally, a curriculum 

learning-based training scheme is adopted considering the distillation difficulty of each layer and the critical 

learning periods in which the information flow paths are created. 

3.2.2 Quantization 

Quantization approaches enable neural networks to perform computations and store tensors using fewer bits 

than the standard floating point precision (i.e., FP32). In particular, by applying quantization, a model can execute 

some or all of its operations on tensors with lower precision, while enabling high-performance vectorized 

operations on various hardware platforms. PyTorch, which is an open-source machine learning framework, offers 

several types of quantization methodologies, namely: 

● Dynamic quantization: The weights are quantized ahead of time, while the activations are quantized 

dynamically during inference. This approach is recommended for LSTM architectures where the model 
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execution time is dominated by loading the weights rather than the complexity of the matrix 

multiplications. 

● Static quantization aware training: During the training phase of a network, all the calculations are 

performed in FP32 precision, with the quantization module modelling the effects of quantization by 

clamping and rounding to simulate the effects of INT8. Then, both the weights and the activations are 

quantized and the activations are fused into the preceding layers. 

● Static quantization: Similarly to the static quantization aware training, this approach is employed to 

quantize both weights and activations, while requiring only a calibration step to determine the optimal 

quantization parameters for activations, instead of re-training the model.  

Here, we focus on the static quantization with INT8 precision, as most of the MediaVerse models are pre-trained 

CNNs on large visual datasets. Table 8 presents the code for performing static quantization on a user-defined 

neural network.  

Table 8: Static quantization in Pytorch 

import torch 
from torch.ao.quantization import ( 
  get_default_qconfig_mapping, 
  get_default_qat_qconfig_mapping, 
  QConfigMapping, 
) 
import torch.ao.quantization.quantize_fx as quantize_fx 
import copy 
 
model_fp = UserModel() 
 
# post training static quantization 
model_to_quantize = copy.deepcopy(model_fp) 
qconfig_mapping = get_default_qconfig_mapping("qnnpack") 
model_to_quantize.eval() 
 
# prepare 
model_prepared = quantize_fx.prepare_fx(model_to_quantize, qconfig_mapping, 
example_inputs) 
 
# calibrate 
for imgs, _ in train_loader: 
    model_prepared(imgs) 
 
# quantize 
model_quantized = quantize_fx.convert_fx(model_prepared) 

 

 

3.2.3 Limitations 

The architectural characteristics and the volume of training data of each MediaVerse model constitute the two 

major criteria for selecting the proper model compression methodology. In particular, InDistill can only be 

applied on 2D CNN networks and requires training the lightweight model from scratch. On the other hand, the 
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static quantization by PyTorch supports several network architectures and does not require any re-training 

procedure, which set it as an optimal solution for pretrained models on large-scale datasets that require extreme 

resource power for training them from scratch.  

3.2.4 Creation of Efficient MediaVerse Models 

The content moderation models developed in the context of the MediaVerse project, namely Disturbing Content 

Detection (DCD) model and NSFW detection model are 2D CNN models trained on small and mid-scale datasets, 

respectively. Thus, InDistill methodology can be employed in order to reduce their inference times and storage 

requirements, while demonstrating competitive performance in terms of accuracy. As presented in deliverable 

D5.4 - Content Moderation Toolset16, the EfficientNet-b1 architecture was selected for both DCD and NSFW 

detection models. Here, we employ InDistill to transfer the knowledge of the EfficientNet-b1 (i.e., teacher) to 

EfficientNet-b0 models (i.e., student). Table 9 demonstrates the performance of the compressed models in terms 

of accuracy, inference time, and storage size compared to the original content moderation models. Although the 

teacher models demonstrate high efficiency in the first place, InDistill further achieves a compression rate of 

38.3% at minimal performance costs. 

Table 9: Evaluation of InDistill on content moderation models 

Models Accuracy  
(%) 

Inference time 
(seconds) 

Storage size 
(MB) 

DCD 

EfficientNet-b1-teacher 95.0 0.077 49.9 

EfficientNet-b0-student  93.4 0.062 30.8 

EfficientNet-b0-InDistill 94.3 0.062 30.8 

NSFW 

EfficientNet-b1-teacher 99.0 0.077 49.9 

EfficientNet-b0-student 98.5 0.062 30.8 

EfficientNet-b0-InDistill 99.0 0.062 30.8 

Note: Accuracy values refer to the Disturbing Images Dataset and the Pornography-2k dataset (see D5.4) for the DCD and NSFW tasks, 

respectively. EfficientNet-b0-student refers to the student model architecture trained from scratch without any distillation or pruning. 

As regards the pre-trained Face Recognition model (i.e., Resnet50) employed in the context of MediaVerse as 

presented in deliverable D3.1 - Next Generation Content Model and Algorithms for New Media Types17, we opted 

for the static quantization methodology for increasing its efficiency. Table 10 demonstrates the results of FR 

model, trained on VGGFace2 dataset, before and after the quantization. In particular, the quantized model 

reduces the inference time by 63.1% (i.e., 0.021 sec.) and the model’s size by 74.9% (i.e., 39.4 MB), while 

                                                           
16 https://mediaverse-project.eu/wp-content/uploads/2022/10/MediaVerse_D5.4-V1.0.pdf  
17https://mediaverse-project.eu/wp-content/uploads/2021/10/MediaVerse_D3.1_NextGeneration-ContentModel-and-
Algorithms-for-NewMediaTypes.pdf  

https://mediaverse-project.eu/wp-content/uploads/2022/10/MediaVerse_D5.4-V1.0.pdf
https://mediaverse-project.eu/wp-content/uploads/2021/10/MediaVerse_D3.1_NextGeneration-ContentModel-and-Algorithms-for-NewMediaTypes.pdf
https://mediaverse-project.eu/wp-content/uploads/2021/10/MediaVerse_D3.1_NextGeneration-ContentModel-and-Algorithms-for-NewMediaTypes.pdf
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demonstrating 1.3% accuracy drop compared to the unquantised model. Finally, neither InDistill nor PyTorch’s 

static quantization can be applied to the Object Detection model described in D3. 1 - Next Generation Content 

Model and Algorithms for New Media Types , as it requires extremely high computational resources to train and 

quantization libraries do not support the Feature Pyramid Networks that are involved in the FasterRCNN 

architecture. However, an architecture introduced recently, namely YOLOv5, exhibits considerably higher 

efficiency than FasterRCNN’s, while demonstrating enhanced performance in terms of mean Average Precision 

(mAP) as well. Table 11 presents the performance of the efficient object detection model, namely YOLOv5-s, 

compared to the FasterRCNN model trained on MS-COCO dataset.  

Table 10: Evaluation of static quantization on Face Recognition model 

Models Accuracy 
(%) 

Inference time 
(seconds) 

Storage size 
(MB) 

Resnet50 86.4 0.057 157.4 

Resnet50 quantized 85.1 0.021 39.4 

 

Table 11: Evaluation of YOLOv5-s efficient architecture for object detection 

Models mAP 
(%) 

Inference time 
(seconds) 

Storage size 
(MB) 

FasterRCNN-ResNet50 36.9 0.984 159.8 

YOLOv5-s 43.3 0.041 27.9 

 

3.3 Saliency Detection in Videos 

Here we explain the task of saliency prediction and present the novel architecture we designed to challenge this 

task, based on a pure-Transformer network. 

3.3.1 Introduction 

Saliency Prediction (SP), in the context of Computer Vision, aims to model the visual attention mechanism of 

humans. Visual attention refers to the human brain ability to select relevant sensory information for preferential 

processing, improving performance in visual and cognitive tasks (Zanca et al., 2020). Visual attention occurs in 

two distinct phases. The first phase involves the acquisition and parallel processing of visual feature maps, while 

the second phase entails merging the information from these maps to select a single location for further and 

intricate computations and reasoning. The computational representation of this process is challenging, 

particularly when considering its temporal dynamics. 

The outcome of Saliency Prediction is a salient mask, which represents the probability distribution of the location 

where humans would fixate on an image. SP has demonstrated utility in event prediction (Shimoda & Yanai, 

2016), semantic segmentation (Gan et al., 2015), video surveillance, and video captioning by enabling extraction 

of information from visual input. In addition, SP holds substantial potential to advance understanding of human 
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brain mechanisms involved in image perception. In the context of MV, saliency detection will serve as a guideline 

that will provide users with insight information for their media assets (i.e., static images, videos, and 360-videos). 

Particularly, in combination with Fader, saliency maps can be a useful tool, which will help users understand 

which part of the image has no visual interest in order to place content (e.g., buttons, text, etc.) on these areas. 

Traditional/Conventional approaches for Video Saliency Prediction (VSP) take advantage of 2D-CNNs for the 

extraction of the visual/spatial features in combinations with LSTMs for the aggregation of the temporal features 

and 3D-CNNs, which process spatio-temporal information in a simultaneous manner. However, a disadvantage 

of CNN architectures is the fact that they cannot model long-range dependencies for video representations. 

Here, in order to address the problem of VSP, we employ a transformer-based architecture to cope with the 

long-range dependencies of the spatio-temporal data. Vaswani et al. (2017) introduced Transformer networks 

initially, for NLP problems. Later, Dosovitskiy et al. (2020) introduced Vision Transformer in a computer vision 

task, such as image classification. The basic element of Transformer networks is the self-attention mechanism 

that Figure 13 shows. The self-attention mechanism in transformers is implemented using three sets of linear 

transformations, known as “query”, “key”, and “value”. These transformations are learned during training and 

are used to compute the attention scores between pairs of input image patches. The attention scores are then 

used to compute weighted sums of the values, which are used to compute the new representations. In general, 

the self-attention mechanism is a powerful way to capture relationships between different parts of sequence 

(temporal/spatial). 

 
Figure 13: Attention computation 

The decision of employing a pure-transformer architecture is based on the fact that transformers have shown a 

strong capability to capture both short-range and long-range correlations while not constrained by the inductive 

bias of CNNs (Cao et al., 2022). Our approach is based on the Visual Saliency Transformer (Liu et al., 2021) and 

introduces a temporal module to adapt it for video settings.  

3.3.2 Typical Approaches 

The first models that had been used to face the task of video saliency detection, leveraged feature extraction 

methods based on the low-level characteristics of the image, such as texture, contrast, colour, and orientation 

(Itti et al., 1998; Le Meur et al., 2006; Cerf et al., 2018, Walther et al., 2009, Erdem et al., 2013). However, as a 

dynamic medium, videos offer a blend of spatial and temporal information. Each frame contains its own spatial 

details, while the continuity between consecutive frames provides the crucial temporal context. When it comes 

to capturing human attention, both low-level visual cues and high-level semantic content play a role, but it is the 

interplay between these features across time that really draws us in. To overcome this issue, many video saliency 
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detection methods used temporal recurrence to predict the saliency map. Some models, such as DeepVS (Jiang 

et al., 2018) and ACLNet (Wang et al., 2019), used sub-networks for objects and motion, with ConvLSTM modules 

for prediction. SalEMA (Linardos et al., 2019) compared exponential moving average and ConvLSTM for video 

saliency modelling. STRA-Net (Lai et al., 2019) used two-stream models with dense residual cross-connections 

and multiple local attentions for saliency map prediction. SalSAC (Wu et al., 2020) improved robustness with a 

shuffled attention module and correlation-based ConvLSTM. ESAN-VSP (Chen et al., 2021) used a multi-scale 

deformable convolutional alignment network and Bi-ConvLSTM for motion prediction. UNISAL (Droste et al., 

2020) is a unified image and video saliency detection model, which can extract static features and determine 

whether to predict temporal information through a controllable switch. It also uses domain adaptation 

technology for high-precision saliency detection on various datasets. 

The majority of contemporary state-of-the-art models rely on 3D convolutional neural network (CNN) 

architectures that are capable of processing spatial and temporal features in a synchronised manner. RMDN 

(Bazzani et al., 2016) is a model that is based on C3D (Tran et al., 2015) and exploits temporal consistency in 

videos in a hierarchical manner. It employs deep 3D convolutional features to represent spatial and short-term 

time relations at the clip level, while a long short-term memory network aggregates clip-level representations of 

sequential clips, thus expanding the temporal domain. However, most 3D-CNN approaches use S3D, as a 

backbone. TASED-Net (Min et al., 2019) is a powerful end-to-end 3D fully convolutional network that uses 

auxiliary pooling to obtain switches with a reduced temporal dimension, enabling max-unpooling layers of the 

prediction network to function correctly. HD2S's 3D-CNN (Bellitto et al., 2021) extracts multi-scale features that 

are combined for the final input. The different abstraction levels enable the model to learn both generic and 

dataset-specific features. ViNet (Jain et al., 2021) is an encoder-decoder architecture that is visual-only and uses 

common deep-learning concepts. It claims that visual saliency prediction is agnostic to audio, which is contrary 

to many other publications in the field. Lastly, TSFP (Chang et al., 2021) is a multi-scale 3D encoder-decoder 

architecture. The encoder generates a feature pyramid of various scales that contain rich temporal-spatial 

semantic features, which are then decoded using a hierarchical 3D convolutional decoder. 

3.3.3 Saliency Detection in MediaVerse: MV-SD Model 

Previous studies (Wu et al., 2020; Wang et al., 2021) have shown that attention, particularly for capturing long-

range information, has powerful representation capabilities that could contribute to predicting gaze. However, 

the use of transformers in video saliency prediction has not been explored. Therefore, in our implementation, 

we aim to investigate the benefits and potential applications of transformer components in VSD. In this section, 

we describe the details of our method to predict visual saliency in videos. Figure 14 shows the overall architecture 

of the network. We designed a pure-Transformer architecture, whose main components are a transformer 

encoder, a temporal transformer module and a transformer decoder. 
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Figure 14: Temporal Visual Saliency Transformer’s architecture 
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Transformer Encoder 

Our encoder utilises the pretrained Tokens-to-Token Vision Transformer (T2T-ViT) (Yuan et al., 2021) to extract 

image features from the video frames. Tokens-to-Token module (Figure 15) is employed in an effort to enable 

ViTs to capture local structure of neighbouring pixels and to increase feature richness. The main stages of T2T 

are Re-Structurization and Soft split 

 

Figure 15: Main stages of Tokens-to-Token patch-conversion process 
Image source: (Liu et al., 2021) 

In re-structurization, the tokens sequence is transformed by the self-attention block. 

 T’ = MLP(MSA(T)) 

Each time, the re-structurization step first transforms previous token embeddings to new embeddings. In the 

three T2T-modules that we use t, the self-attention block is designed in a manner that produces token sequences 

of length 196, 784 and 3136, respectively. These lengths have been selected to simplify the Reshape step, in 

which the token sequences mentioned before get converted to 14 x 14, 28 x 28, 56 x 56 images, respectively. 

Then, soft split is applied to model local structure information and reduce the length of tokens. 

  Ti’ = MLP(MSA(Ti)) 

        Ii = Reshape(Ti’) 

   Ti+1 = SS(Ii),    i =…(n – 1) 

Where MLP is multilayer perceptron, MSA is multi-head self-attention and SS is soft split. In SS, the overlapped 

patch splitting is the one that introduces local correspondence within neighbouring patches. I1 is split into k x k 

patches with s overlapping. Image boundaries get padded with p zero-padding. The image patches are unfolded 

to a sequence of tokens 𝑇𝑜 ∈ ℛ 𝑙𝑜  × 𝑐𝑘2
 where the sequence length is computed as: 

𝑙𝑜 =  ℎ𝑜  × 𝑤𝑜  = [
ℎ + 2𝑝 − 𝑘

𝑘 − 𝑠
 +  1]  × [

𝑤 + 2𝑝 − 𝑘

𝑘 − 𝑠
 +  1]    (1) 

Where ℎ and 𝑤 stand for the height and width of the initial image, respectively and ℎ𝑜 and 𝑤𝑜 stand for the 

height and width of the new image that will occur after the reshape of the tokens. 
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The T2T transformation can be performed in multiple iterative steps, where in each step, previous token 

embeddings are restructured to obtain new embeddings. Among the three soft split steps, the patch sizes are 

set to k = [7, 3, 3], the overlappings are set to s = [3, 1, 1], and the padding sizes are set to p = [2, 1, 1]. As 

such, we can obtain multilevel tokens T1 ∈ 𝑅𝑙1 ✖ 𝑐 , T2 ∈ 𝑅𝑙2 ✖ 𝑐 , and T3 ∈ 𝑅𝑙3 ✖ 𝑐 . Given the width and height 

of the input image as H and W, respectively, then 𝑙1  =  
𝐻

4
×

𝑊

4
 ,  𝑙2  =  

𝐻

8
×

𝑊

8
 , and  𝑙3  =  

𝐻

16
×

𝑊

16
. We follow 

(Yuan et al., 2021) to set c = 64 and use a linear projection layer on 𝑇3 to transform its embedding dimension 

from c to d = 384. The final token sequence T3 consists of  l3 c-dimensional tokens, which encode the visual 

information of the correspondent frame. 

Temporal Module 

Next, we insert a transformer module between the transformer encoder and decoder, which applies Divided 

Space-Time Attention (Bertasius et al., 2021) (see Figure 16). Given a frame at instant t and one of its patches as 

a query, Divided Space-Time Attention computes the spatial attention over the whole frame and then the 

temporal attention in the same patch of the query but also in the rest of the frames that exist in the clip. The 

final token sequence models both temporal and spatial information for the whole clip of frames. 

 
Figure 16: Divided Space-Time Attention 

Transformer Decoder 

Our decoder aims to decode the patch tokens to saliency maps. Since Saliency Maps have high resolution, we 

use Reverse Tokens-to-Token (Liu et al., 2021) procedure to upsample the patch tokens and make dense 

predictions. Furthermore, we fuse low-level tokens from the T2T-ViT encoder with the upsampled tokens to 

leverage accurate local structural information. A saliency token is added on the patch token sequence and is 

updated through self-attention in each transformer decoder. Finally, for saliency prediction we perform patch-

saliency-attention between the final decoder patch tokens and the saliency token. Then, we apply two linear 

transformations with the sigmoid activation to scale them in the range [0,1] and reshape them to a 2D saliency 

map. The decoder’s process is formulated as: 
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𝑇𝐷
𝑖  =  𝑀𝐿𝑃(𝑀𝑆𝐴(𝐿𝑖𝑛𝑒𝑎𝑟([𝑅𝑇2𝑇(𝑇𝐷

𝑖+1), 𝑇𝑖]))  

where the operator [ · , · ] expresses the concatenation along the token embedding dimension. Linear means 

linear projection to reduce the embedding dimension after the concatenation to c. RT2T refers to reverse Tokens-

to-token transformation which upsamples tokens by expanding each token into multiple sub-tokens.  

Particularly, we decrease the embedding dimension of the input patch tokens from d = 384 to c = 64 by 

projecting them. Then, we utilize another linear projection to extend the embedding dimension from c to 𝑐𝑘2. 

In a similar manner to the soft split step in T2T, every token is treated as a k × k image patch, and the 

neighbouring patches overlap by s. Subsequently, we can fold the tokens as an image with p zero-padding, and 

the output image size can be determined using Equation (1) inversely. Given the length of the input patch tokens 

as ℎ𝑜 × 𝑤𝑜, the spatial size of the output image is ℎ × 𝑤. Finally, we reshape the image back to the upsampled 

tokens with size 𝑙𝑜 × 𝑐, where 𝑙𝑜 = ℎ × 𝑤 By setting s < k − 1, the RT2T transformation can expand the token 

length. Motivated by T2T-ViT, we perform RT2T thrice and set k = [3, 3, 7], s = [1, 1, 3], and p = [1, 1, 3]. 

Consequently, the length of the patch tokens can be gradually increased to H × W, which equals the original size 

of the input image. 

Dataset 

For the training, evaluation and testing phases we used the DHF1K dataset. DHF1K is the largest and most diverse 

video saliency dataset including 600, 100, 300 videos for each phase respectively. The videos have 640x360 

resolution, a rate of 30 fps and the fixation maps have been collected from 17 observers by an eye-tracker device.  

3.3.4 Implementation Details 

The input frames have been resized to 256 x 256. For the training phase, a random clip of 8 or 16 frames gets 

extracted from each video. Then, five different augmentation techniques are used, each one with 0.5 probability 

to get applied in each video clip. More specifically, the following augmentation procedures have been used: 

1. RandomCrop: crops the given clip at random location with size 224 x 224.  

2. ColorJitter:  randomly changes the brightness, contrast, saturation and hue of an image. 

3. DropFrame: randomly selects and rejects one frame from the clip. 

4. FrameRate: applies different frame rates in the frame selection process. 

5. Inversion: inverses the temporal sequence of the frames. 

As a loss function, we used a combination of saliency metrics, which are common and effective in static and 

dynamic saliency prediction models. We take the weighted summation of Kullback-Leibler (KL), Linear 

Correlation Coefficient (CC) and Similarity (SIM) to represent the loss function and our ablation study proved 

that the weighted summation of these three losses achieves better results than using one of them. The final loss 

function can be expressed as:  

 

𝐿(𝑆, 𝐺)  =  𝐿𝐾𝐿(𝑆, 𝐺)  +  𝑎1𝐿𝑐𝑐(𝑆, 𝐺)  +  𝑎2𝐿𝑆𝐼𝑀(𝑆, 𝐺) 

where  S ∈ [0,1] is the predicted flattened saliency map with length i and G ∈ [0,1] the ground truth flattened 

saliency map with length i. We set  𝑎1 =  0.5 and  𝑎2 =  0.5, to scale the amplitudes of each loss. The calculation 

formulas for the three loss can be represented as: 
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𝐿𝐾𝐿(𝑆, 𝐺)  =  ∑

𝑖

𝐺𝑖𝑙𝑛
𝐺𝑖

𝑆𝑖
 

𝐿𝐶𝐶(𝑆, 𝐺)  =  −
𝑐𝑜𝑣(𝑆, 𝐺)

𝜌(𝑆)𝜌(𝐺)
 

𝐿𝑠𝑖𝑚(𝑆, 𝐺)  =  − ∑

𝑖

𝑚𝑖𝑛(𝐺𝑖 , 𝑆𝑖) 

where cov computes the covariance and ρ computes the standard deviation. 

3.3.5 Results 

The test set of DHF1K is not released, and only the authors of the dataset can confirm the testing scores after 

submission. The metrics that are used on DHF1K and are the most common for saliency prediction are 

Normalised Scanpath Saliency (NSS), Pearson’s Correlation Coefficient (CC), Similarity (SIM) and variants of Area 

Under ROC Curve (AUC-Judd and shuffled AUC). Our method’s evaluation metrics can be seen on Table 12 and 

through comparison on the benchmark’s website18 can be seen that it is equally compared with all the state-of-

the-art methods. 

Table 12: Our model’s score on DHF1K benchmark compared with state-of-the-art CNN architectures 

Models NSS ↑ CC ↑ SIM ↑ AUC-J ↑ sAUC ↑ 

SalEMA 2.574 0.449 0.446 0.890 0.667 

Tased-NET 2.667 0.470 0.361 0.895 0.710 

UNISAL 2.776 0.490 0.390 0.901 0.610 

MV-SD 2.735 0.4936 0.3731 0.904 0.716 

 

On Figure 17 some qualitative results of our model are exemplified. Frame line shows the original frame of the 

clip, GT line shows the original frame overlapped with the ground truth fixation map and SP line shows the 

original frame overlapped with the predicted saliency mask. The results of the model are satisfactory, with both 

the ground truth fixation map and the predicted saliency mask being very close to each other. This indicates that 

the model is performing well in accurately predicting the regions of an image that are most likely to draw a 

viewer's attention. Overall, these results suggest that the saliency prediction model is a promising tool for 

applications such as image and video processing, where identifying important visual information is critical. 

                                                           
18 https://mmcheng.net/videosal/   

https://mmcheng.net/videosal/
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Figure 17: Qualitative results of our approach 

3.4 Face Blurring 

In this section, we present the modifications we implemented to enhance the time performance of the face 

blurring module. 

3.4.1 Current State 

Previously, to tackle face blurring, the SCRFD (Guo et al., 2021) model was deployed to detect faces in 360 videos 

and then these faces were blurred with GaussianBlur. This model was proposed by Deng et al. (2009) and uses 

sample and computation redistribution to achieve efficient face detection. During training data augmentation, 

square patches get cropped from the original images using a random size from the range [0.3, 1.0] of the short 

edge of the original images. The model re-distributes positive training samples across different scales of feature 

maps to cope with the smaller testing scale and the computation redistribution across different components is 

explored. This is done to maintain a predefined computation budget and to find the relationship between 

computation distribution and performance from populations of models. The above implementation has been 

integrated into MediaVerse, however due to high resource requirements we did not proceed to make it available 

for the users.  

3.4.2 Modifications 

In order to reduce the resource requirements of our implementation, we implemented the following three 

modifications:  
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1. Decreased the value of the variable that determines the size of the input image that is fed into the model 

during inference and affects the size of the detected faces. This modification decreases the 

computational cost of the model. Furthermore, this decrease results in missing some faces which were 

already small, however this is not common, and the undetected faces already lack detailed information, 

so the facial characteristics do not reveal the subject’s identity.  

2. Replaced GaussianBlur method with BoxBlur method. Both of them belong to PIL Library and particularly 

to ImageFilter module. BoxBlur blurs the image by setting each pixel to the average value of the pixels in 

a square box extending radius pixels in each direction. We selected BoxBlur because in contrast with 

GaussianBlur, it uses an optimised implementation, which runs in linear time relative to the size of the 

image for any radius value and its results are equally acceptable. 

3. Instead of checking every single frame to detect faces, we implemented a different approach inspired 

from binary search algorithm. Our algorithm checks for face detection every n frames. A frame can 

belong in two categories: face detected/ no face. If our algorithm finds that two consecutive checked 

frames belong to the same category, then it is assumed that all frames in between those two belong to 

the same category. If the two checked frames belong to different categories then we examine the 

intermediate frame of those two. Then, the algorithm gets called iteratively for the two new pairs of 

frames (start, mid), (mid, end). 

In Table 13, we observe a decrease of time requirements of our model around 75%, after the application of the 

new modifications. These modifications enhance the user experience by improving the responsiveness of the 

module. It is noteworthy that the magnitude of time reduction varies depending on how often faces appear in 

frames. This happens due to the binary-search-inspired algorithm, since when faces appear rarely, the algorithm 

will not check every single frame for face detection. Moreover, longer duration, higher resolution and bigger fps 

rates of videos lead to higher time requirements, however they do not affect reduction percentage. 

Table 13: Time Requirements of our model pre- and post-modifications 

Video Characteristics Without 
Modifications (sec.) 

With Modifications 
(sec.) 

Reduction 
Percentage (%) 

Resolution: (480,360), FPS: 30, Duration: 10 sec 33.5 7.7 77.01 

Resolution: (1280, 720), FPS: 25, Duration: 10 sec 42.3 11.1 73.75 

Resolution: (1280,720), FPS: 30, Duration: 24 sec 117.7 29.6 73.5 

Resolution:  (1296, 760), FPS: 24, Duration: 40 sec 189.1 44.3 76.57 

Resolution: (1920, 960), FPS: 30, Duration: 27 sec  262.0 54.8 79.08 

3.5 Deployment 

The Media Annotation Service, shown in Figure 18, exposes a gRPC API described in the Table B.1 of Annex II. For 

flexibility, it consists of both unidirectional (from server to client) and unary endpoints, while the bidirectional 

endpoints, discussed in D3.2, have been removed to simplify the connection management logic of the client. The 

unidirectional endpoints accept an image, video or 3D annotation request and stream the responses of the 

relevant annotation models as they become available. The unary endpoints, on the other hand, send the 

response in one message after all annotation models have run. In the annotation request, in addition to 

specifying the asset by including a downloadable link, the client can now also directly send the asset bytes. 



MediaVerse Project – Grant ID 957252 

Page 43 of 70 
 

 
Figure 18: The Media Annotation Service architecture 

We have also expanded our annotation models including NSFW detection for both images and videos, a new 

image captioning model based on the OFA19 checkpoint, a model for extracting regional image features to 

facilitate region based retrieval and a video model for face blurring. The NSFW and regional feature extraction 

models have been exported as ONNX and integrated in the Triton Inference Server. However, the OFA based 

image captioning and the video face blurring models have been implemented as separate microservices due to 

their complexity and incompatibility with the Triton’s inference framework. These microservices expose an HTTP 

REST API, which the controller queries to get the respective annotations. The new regional feature extraction 

model uses an object detector to obtain region proposals and for each region extracts a feature vector. 

  

                                                           
19 https://github.com/OFA-Sys/OFA  

https://github.com/OFA-Sys/OFA
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4 MediaVerse Retrieval and Recommendation Systems 

In this section, we further extend what we discussed in Section 3 of the Deliverable 3.2 - Content Discovery and 

Recommendation, Annotation and Adaptation Framework20, providing new progress and implementations. As 

regards the Retrieval Technology, we provide further experiments on new datasets as well as ALBEF (Li & 

Selvaraju, 2021), an alternative architecture to CLIP (Radford & Kim, 2021), capable of acting in a large-scale 

context for asset retrieval. It obtains state-of-the-art results on MS-COCO (Lin & Maire, 2014) and FLICKR30K 

(Young & Lai, 2014), as well as lower multimodal encoding and search times. Concerning Recommender System 

(RS), we make recommendations based on the semantics of previous posts of the user that makes the request 

for recommendation. Here we provide further quantitative analysis on the RS and we present two dataset 

augmentations with which we perform the testing. Finally, we provide a projection of retrieval and 

recommendation systems’ implementation in the MediaVerse platform through use examples. 

4.1 MediaVerse Cross-Modal Retrieval System 

Cross-modal retrieval is the task of searching data using different data modalities (e.g., image-text). It aims to 

enable flexible retrieval experience across different modalities (e.g., texts vs. images). The core of cross modal 

retrieval research is to learn a common subspace where the items of different modalities could be directly 

compared to each other. Specifically, we expect an arrangement of vectors in the common space based mainly 

on asset semantics. In an Information retrieval (IR) context, given an input text query, a retrieved dissimilar text 

being more similar than similar image results in poor feature quality and an unwanted prioritisation of assets of 

the same query modality. 

 

Figure 19: Example of Mediaverse “Visual Search” experience inside “MyAsset” section 

In this section, the focus is on content retrieval, also called “search”. We show two examples of the retrieval 

module implementation inside the MediaVerse platform. Within the “MyAssets” section, as shown in Figure 19, 

                                                           
20 https://mediaverse-project.eu/wp-content/uploads/2022/07/D3.2-V1.0.pdf  

https://mediaverse-project.eu/wp-content/uploads/2022/07/D3.2-V1.0.pdf
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the user can exploit the “Visual Search” feature, associated with an asset, to receive suggested similar MV assets. 

The most similar assets in the MV platform are ranked starting from the most similar. Our cross-modal retrieval 

technology is capable of directly processing the MV assets without relying on auxiliary tags. 

Within the “Search” section, as shown in Figure 20, the user can search for other assets in the MV Platform. 

MediaVerse requires the user to insert a query (a text) as input. The user aim is to find the MediaVerse assets 

most similar to its input query regardless of it being a text or an image. The system shows to the user the most 

similar assets already present in the MediaVerse Platform. Similarly, in the “MyAsset” section, all assets have the 

“Visual Search” feature, as shown in Figure 20. The semantically similar assets are ranked starting from the most 

similar with respect to the selected one. 

 

Figure 20: Example of MediaVerse “Visual Search” experience inside the “Search” section 

The “Visual Search” feature does not exploit any Retrieval technology yet. Semantic asset alignment is possible 

thanks to pre-trained multimodal architectures that generate close vector representations when MV assets are 

similar. In Deliverable 3.2 - Content Discovery and Recommendation, Annotation and Adaptation Framework, we 

referred to CLIP and we described its architecture and the results obtained. In the following subsections, we will 

do the same with ALBEF, a possible CLIP alternative, as well as to provide additional CLIP results beyond those 

already provided in D3.2. 

4.1.1 ALign BEfore Fuse (ALBEF) 

In this section, we show ALign BEfore Fuse (ALBEF), Figure 21. Similarly to CLIP, it first encodes the image and 

text independently with a detector-free image encoder and a text encoder. Then a multimodal encoder fuses the 

image features with the text features through cross-modal attention. An intermediate image-text contrastive 

(ITC) loss is applied on representations from the unimodal encoders, which serves three purposes:  

1. it aligns the image features and the text features, making it easier for the multimodal encoder to perform 

cross-modal learning; 

2. it improves the unimodal encoders to better understand the semantic meaning of images and texts;  
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3. it learns a common low-dimensional space to embed images and texts, which enables the image-text 

matching objective to find more informative samples through our contrastive hard negative mining.  

To improve learning under noisy supervision the authors propose Momentum Distillation (MoD), a simple 

method, which enables the model to leverage a larger uncurated web dataset. During training, a momentum 

version of the model is kept by taking the moving-average of its parameters and using the momentum model to 

generate pseudo-targets as additional supervision. With MoD, the model is not penalised for producing other 

reasonable outputs that are different from the web annotation. MoD is proven not only to improve pre-training, 

but also downstream tasks with clean annotations. 

 

Figure 21: Illustration of ALBEF. Image source: (Li & R. Selvaraju, 2021). 

Vision Encoder: 12-layer visual transformer ViT-B/16 (Dosovitskiy & Beyer, 2021) (85.8M parameters). 

Text Encoder: 6-layer transformer initialized using the first 6 layers of the BERTbase (Devlin & Chang, 2019) 

(123.7M parameters). 

Multimodal encoder: 6-layer transformer initialized using the last 6 layers of the BERTbase. 

The final text and image representations are 256-d vectors. 

Table 14 shows the hyperparameters adopted in (Li & R. Selvaraju, 2021). 

Table 14: ALBEF general hyperparameters 

HYPERPARAMETER VALUE 
Batch size 512 

Training epochs 30 

Weight decay 0.02 

Warm-up iterations 1000 

 

Training data: two web datasets (Conceptual Captions (Sharma & Ding, 2018), SBU Captions (Ordonez & Kulkarni, 

2011)) and two in-domain datasets (COCO (Lin & Maire, 2014) and Visual Genome (Krishna & Zhu, 2017)). The 

total number of unique images is 4.0M, and the number of image-text pairs is 5.1M. To show that the method is 

scalable with larger-scale web data, a noisier Conceptual 12M dataset (Changpinyo & Sharma, 2021) is 
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introduced, increasing the total number of images to 14.1M. Table 15 shows the number of images and texts 

over the datasets used to train ALBEF. 

Table 15: Statistics of the pre-training datasets 

 COCO (KARPATHY-TRAIN) VG CC SBU CC12M 
# image 113K 100K 2.95M 860K 10.06M 

# text 567K 769K 2.95M 860K 10.06M 
 

4.1.2 Experimental Setup 

Retrieval quality: The pre-trained CLIP and ALBEF models are available online for inference and fine-tuning 

purposes. In addition to CLIP, we downloaded ALBEF trained on 14M images and tested it on MS-COCO 5K test 

split (Karpathy) for both text and image crossmodal retrieval. For the robustness, we tested the two models also 

on FLICKR30K 5k test split. For both datasets, the set of retrievable assets contains 5000 assets. 

Search run time: Since ALBEF vectorizes assets to 256d embeddings, it is useful to evaluate what benefits there 

are in terms of time required to carry out the search by means of FAISS indexer. The setup is the same as for 512 

dimension vectors: 5000 retrieved assets over a space of 5000 retrievable ones. 

Encoding time: The encoding time has been computed for both CLIP and ALBEF in terms of time required to 

vectorize texts and images. Both computations take into consideration the pre-processing phase necessary to 

generate the input of language and vision transformers. 

4.1.3 Results 

Tables 16 and Table 17 show results in terms of Recall (R@1, R@5, R@10) for MS-COCO (also employed in D3.2) 

and FLICKR30K (new evaluation dataset introduced in this deliverable) respectively. The information included in 

the first two rows of Table 16 is also presented in D3.2. On both MS-COCO and FLICKR30K, ALBEF outperforms 

CLIP. Table 19 (first three rows also presented in D3.2) shows that the encoding times of ALBEF are also more 

advantageous. In line with this, Table 18 shows that ALBEF, which maps assets to 256-d instead of 512-d vectors, 

is associated with shorter search times (by about 0.2ms) with respect to the CLIP ones. In a large-scale scenario 

it can lead, jointly with shorter encoding time, to considerable gains in terms of retrieval time. 

Table 16: Recalls of img2txt and txt2img tasks (MS-COCO val 5k) 

 TEXT RETRIEVAL IMAGE RETRIEVAL 

encoder R@1 R@5 R@10 R@1 R@5 R@10 

VGG19 BiGRU (3 layers, 128 

units, 128 embedding dim) 
0.094 0.283 0.406 0.086 0.260 0.379 

CLIP (ViT-B/32) 0.322 0.623 0.747 0.237 0.518 0.656 

ALBEF (14M) 0.505 0.782 0.850 0.440 0.741 0.846 

Table 17: Recalls of img2txt and txt2img tasks (FLICKR30K val 5k) 

 TEXT RETRIEVAL IMAGE RETRIEVAL 

CLIP (ViT-B/32) 0.433 0.681 0.774 0.411 0.663 0.753 

ALBEF (14M) 0.452 0.714 0.801 0.430 0.692 0.780 
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Table 18: Search methods run time 

 N. CONTENTS EMBEDDINGS  SIZE K RUN TIME (MS) 

vanilla cosine 5000 512 5000 129.31 

filter + cosine 5000 512 5000 105.84 

faiss (CLIP) 5000 512 5000 0.72 

faiss (ALBEF) 5000 256 5000 0.56 

 

Table 19: Encoding time 

 TEXT ENCODING TIME (MS) IMAGE ENCODING TIME (MS) 

CLIP 9.10 17.43 

ALBEF 8.15 15.71 

 

4.2 MediaVerse Recommendation System 

In this section, we propose a formal description and a further quantitative analysis of the content-based 

recommender system proposed in Section 4 of Deliverable 3.2 - Content Discovery and Recommendation, 

Annotation and Adaptation Framework21. 

In general, we can classify recommendation systems in different categories based on the approach and on the 

different sources of information for providing users with recommendations of items. The algorithm proposed in 

D3.2 belongs to the content-based class of recommender systems. Content-based recommender systems 

suggest items to users based on their preferences and the characteristics of the items themselves. Content-based 

systems make recommendations by analysing the attributes of the items a user has shown interest in and 

suggesting similar items with matching attributes (Chen et al., 2021). 

First, we propose a use case example of recommender system, performed with the skimage python library, and 

an example of how the recommendation feature can be integrated in the MediaVerse Dashboard. Imagine a 

scenario where user u requests for recommended content belonging to both text and image modality. For the 

purpose of this example, u posted the images and texts shown in Figure 22 in the form of MV posts. In this 

example, images and texts represent separate posts that the user might have uploaded. 

                                                           
21 https://mediaverse-project.eu/wp-content/uploads/2022/07/D3.2-V1.0.pdf  

https://mediaverse-project.eu/wp-content/uploads/2022/07/D3.2-V1.0.pdf
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Figure 22: Example of possible posts in image and text modality uploaded by the user 

The MV recommender system takes as input user u’s previous posts and searches for similar assets in MV space, 

ranking the output assets of any modality, meaning that we can have images or texts in output. 

Figure 23 presents a hypothetical scenario where the MV space is populated by a pool of images and texts. The 

recommended assets, thus the recommendation output, extracted from other user’s posts are highlighted in red 

squares. As we can observe the recommended images and texts are semantically similar to the previous content 

of the user that made the recommendation request.  

 

Figure 23: Example of the pool of posts available in MV space and of what the RS would retrieve 

 

In Figure 24, there is a possible integration of the recommender system in the MediaVerse Dashboard. We can 

see that a recommendation request can be activated after a click on the “Discover” tab in the “Search” page of 

the Dashboard. At the moment the “Discover” tab is not implemented yet.  
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Figure 24: Possible integration of the RS output in the MV Dashboard 

4.2.1 Task Description 

In this section, we discuss the recommendation task with a formal description of value proposition and method. 

As stated in the previous section, the value proposition of the recommendation task is to present the user with 

a new set of images and texts that the user has never seen before, using as input of the recommendation request 

the posts that the user has previously shared. 

We define: 

● u : user that makes the recommendation request 

● 𝐶 𝑇 =  {𝑐1
𝑇 , . . . , 𝑐𝑗

𝑇} : set of previous posts of user u in text modality 

● 𝐶 𝐼 =  {𝑐1
𝐼 , . . . , 𝑐𝑗

𝐼} :  set of previous posts of user u in image modality 

● 𝑞(𝐼, 𝑇) : recommendation request (query) of user u 

● 𝑅(𝐼, 𝑇)  =  {𝑟𝑘
𝐼,𝑇 , . . . , 𝑟𝑘

𝐼,𝑇} : ranked set of recommended assets in both text and image modality for user 

u 

The objective is to recommend, for each user, a ranked list of images and texts 𝑅(𝐼, 𝑇), based on the set 𝐶 𝑇  

and  𝐶 𝐼   of content posted by user u. 

Figure 25 presents the method to obtain the recommendations and it follows the following steps: 

1. User u makes a query 𝑞(𝐼, 𝑇), i.e., a request to discover new content. 

2. The RS accesses the content stored when user u first uploaded the previous posts 𝐶 𝑇 and 𝐶 𝐼 and 

retrieves their embeddings (for the moment performed through CLIP, but there is the possibility to 

switch to ALBEF), separating the process for images and texts. 

3. Then it performs a clustering through HDBSCAN of the embeddings and creates the so-called “areas of 

interests”. 
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4. From the clusters it extracts the medoids of each cluster as representative samples of their “area of 

interest”. 

5. Then uses each medoid as input to the retrieval system to discover similar assets in the FAISS index. It 

performs this operation in all four possible modality pairs (image to image, image to texts, text to image 

and text to text). 

6. Finally, it ranks all assets according to similarity score in a unified output 𝑅(𝐼, 𝑇). 

 

Figure 25: Functional diagram of the Recommender System 

4.2.2 Experimental Setup 

Differently from the retrieval system, that requires one asset as input query, in the recommendation system we 

need as input query multiple assets, to simulate the previous posts of user u. Therefore, for the testing and 

evaluation of the performance of the recommender system we implemented two experimental setups creating 

two custom datasets for the occasion: 

● Augmented MS-COCO dataset: the reason behind the augmentation is that MS-COCO only has a 

maximum of five captions associated with each image and one image associated with each caption. 

Therefore, we could not evaluate the recommender system; since we need to input several images and 

texts from the same “area of interest”, in order to test the clustering. Thus, we need a dataset with 

multiple images and texts belonging to the same class to establish a ground truth: the evaluation of the 

relevance of the output depends on whether the asset in output belongs to the same class as the input. 

The augmentation was performed with the following tools:  

○ We used a paraphraser to increase the number of captions while preserving the overall 

semantics. We randomly sampled two of the 10 paraphrases applied by 

tuner007/pegasus_paraphrase · Hugging Face22 to each of the five captions. In this way, we 

obtained 20 captions associated with each image.  

○ We used the Web Search API | Microsoft Bing23 provided by Microsoft to increase the number 

of images. We made a query for each of the 5 MS-COCO original captions and we retrieved the 

                                                           
22 https://huggingface.co/tuner007/pegasus_paraphrase  
23 https://www.microsoft.com/en-us/bing/apis/bing-web-search-api  

https://huggingface.co/tuner007/pegasus_paraphrase
https://www.microsoft.com/en-us/bing/apis/bing-web-search-api
https://huggingface.co/tuner007/pegasus_paraphrase
https://www.microsoft.com/en-us/bing/apis/bing-web-search-api
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first four image results from Bing Web Search. In this way, we obtained 20 images associated 

with the 20 captions already generated from the paraphraser.  

● CIFAR-100 captioned dataset: CIFAR-100 train dataset is composed of 100 classes with 500 images per 

class. In order to obtain both images and texts belonging to the same class, we perform a captioning of 

the images with the pretrained network from bipin/image-caption-generator · Hugging Face24. Thus, we 

obtain 500 images and 500 texts belonging to the same CIFAR-100 class, since we assume that a caption 

generated from an image belongs to the same class as the image. 

In order to evaluate the Mean Average Precision (MAP) of the RS we perform multiple queries. One query 𝑞(𝐼, 𝑇) 

is one recommendation request, giving as input (i.e., as user’s previous posts) Nc classes with Ni images or texts 

per class. For each class, there are k relevant assets to retrieve in a pool of P items in MediaVerse space. The 

Ground Truth is that a recommended asset is considered relevant if it belongs to one of the Nc classes in input. 

4.2.3 Results 

The first testing was performed with MS-COCO augmented dataset. We evaluate MAP@10 for each of the four 

modality comparing CLIP and ALBEF encoder. This experiment is performed for each modality with the following 

setup: we upload as user previous posts 10 images and 10 texts belonging to the same “area of interest” (i.e., 

images and texts generated from the same MS-COCO original sample). Therefore, we set Nc = 1 and Ni = 10.  

Then we upload 1000 random images and texts to simulate the pool of MV posts from which we want to retrieve 

the 10 relevant items generated from the same MS-COCO original sample, so we set P = 1000 and k = 10. Table 

20 shows the mean of the average precision over 10 different queries, for both ALBEF and CLIP encoder. 

Table 20: MAP@10 with MS-COCO augmented 

 CLIP ALBEF 

Img2Img  0.8836  0.9739 

Img2Txt 0.7715 0.7394 

Txt2Img 0.9033 0.8421 

Txt2Txt 0.9549 0.9091 

 

The second testing was performed with captioned CIFAR-100. This experiment is performed for each modality 

with the following setup: we upload as user previous posts 100 images and 100 texts belonging to three “areas 

of interest” (i.e., images and texts belonging to the same CIFAR-100 class). With this setup, we want to test how 

the RS performs when the user has uploaded semantically various content. Therefore, we set Nc = 3 and Ni = 

100. We upload a pool of 1000 random images (P = 1000) and texts as MV discoverable items, from which we 

want to retrieve the k = 10 relevant items the 3 classes in input (selected at random from the 3 classes). Table 21 

shows the mean of the average precision over 10 different queries, for both ALBEF and CLIP encoder. 

                                                           
24 https://huggingface.co/bipin/image-caption-generator  

https://huggingface.co/bipin/image-caption-generator
https://huggingface.co/bipin/image-caption-generator
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Table 21: MAP@10 with captioned CIFAR-100 

 CLIP ALBEF 

Img2Img  0.9084 0.9635 

Img2Txt 0.7925 0.6753 

Txt2Img 0.8951 0.7815 

Txt2Txt 0.9066 0.9616 

 

By comparing Table 20 and Table 21 we can observe how ALBEF tends to perform better in uni-modality, while 

in cross-modality CLIP performs better. 

4.3 Deployment 

 

Figure 26: Rest API - Retrieval and Recommendation systems 

The user can access the system by means of three functions as depicted in Figure 26, and described with more 

details in Table 22. 

Duplicate content: The application is designed to check for duplicated contents even if they are associated with 

different MediaVerse IDs. So, if the user tries to add an image/text already present in the collection but with a 

different ID, the application will append the new ID to the tail of the list of IDs associated to a specific Faiss index 

of the user. Hence, the application is designed to not store multiple times the same content inside the Faiss index 

(for the sake of memory footprint), but it keeps track of different IDs associated with that same content. When 

the system is asked to retrieve the most similar contents with respect to an input query, the IDs associated with 

the retrieved contents are the most recent (last element of the IDs list). 
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Table 22: MediaVerse Retrieval and Recommendation system functions 

FUNCTION INPUT OUTPUT 

add_content(): 
 

In this way the user can add 
content (text or image) to the 
system. It will be encoded as a 
512 (or 256 in the case of 
ALBEF) embedding vector and 
stored into the Faiss index. 

- username: unique identifier of the 
user who posts the content 
- text or image binary data: refer to 
usage.py example 
- id: MediaVerse ID of the content to 
load 
- type: "text" or "image", string 
describing the data type of the 
content to be loaded 

- a success message in the field “msg” 
- the elapsed time for the operation in 
the field “time” 

retrieve_contents(): 
 
The user enters a query (text or 
image) with the aim of 
retrieving the K most similar 
elements among those stored 
inside the Faiss index. These 
top K contents are ranked 
according to the cosine 
similarity with respect to the 
input query. 

- username: unique identifier of the 
user who search for a content 
- text or image binary data: refer to 
usage.py example 
- k: number of similar content to 
retrieve 
- type: "text" or "image", string 
describing the data type of the input 
query 

Two fields (“text”, “image”) each having 
as subfields the following: 
- contents: ordered list containing the 
ids (string) of the retrieved texts/images. 
The list is ordered based on decreasing 
values of similarity scores (i.e., the first 
content is the most similar to the  
query). 
- scores: ordered list of similarity scores 
for the retrieved contents (i.e., the first 
score represents the similarity between 
the query and the first content in the 
“contents” subfield). 

recommend_contents(): 
 
The user does not enter any 
query. Starting from a seed, 
the System suggests to the user 
new contents based on user 
post history and a certain 
degree of novelty. The top K 
contents are ranked according 
to the cosine similarity with 
respect to the generated seed. 

- username: unique identifier of the 
user who searches for a content (its 
contents are excluded from the 
recommendation process) 
- k: number of similar assets to 
recommend 

- text (if the user seed is built starting 
from text contents) with subfields 
“text2text” and “text2image” 
- image with subfields “image2text” and 
“image2image” 
 
Each subfield contains two subsubfields: 
- assets: ordered list containing the ids 
(string) of the retrieved images. The list 
is ordered based on decreasing values of 
similarity scores (i.e., the first asset is 
the best one retrieved for that query). 
- scores: ordered list of similarity scores 
for the retrieved texts 

 

The CMRR (cross-modal retrieval and recommendation) project is available on GitHub and contains the following 
elements (see Figure 27): 

● app.py: Flask Rest Api exposing three services: add_content(), retrieve(), recommend(). Remember that 

all three services reside in the same rest api instance, hence in the same docker container. 

● docker: folder containing: 

○ Dockerfile: file to create the docker image. It creates a conda virtual environment where 

dependencies are installed together with OpenAI CLIP github to load the model instance and run 

the encoding of images and texts. 

https://github.com/D2KLab/CMRRS/tree/recommendation
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○ docker-compose.yml: which build the docker image and run a container all at once by means of 

the “docker-compose up” command. 

○ .env: file containing: 

■ the PORT variable at which the service is exposed. This value can be edited to choose 

switch service port. Its default value is 8007. 

■ the MODEL variable takes value ‘clip’ or ‘albef’ depending on which model is used to 

encoding MV assets. 

● usage: folder containing two examples of retrieval and recommendation services usage. 

● albef: folder containing utility scripts to load and run the ALBEF deep learning architecture. 

● requirements.txt: list of application dependencies which is read by the Dockerfile. 

● .png: images showed in the README.md 

● README.md: description of exposed services: expected input and output. 

● scripts: folder containing shell scripts to run the rest api. 

● log: folder with a log file listing activity of the last session. 

● Download and install Docker Desktop available at: https://www.docker.com/products/docker-desktop/. 

● Run “docker-compose up –build” to start the REST application. 

 

 

Figure 27: Project folder 

  

https://www.docker.com/products/docker-desktop/
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5 Conclusions 

This deliverable reported the work conducted in the framework of WP3 pertinent to the Media Assets Annotation 

and Management (MAAM) development, the Media Annotation Service new model additions and updates on 

previous models as well as the MediaVerse Retrieval & Recommendation Systems updates. 

The MAAM application is developed to provide edge-technology-based functionalities pertinent to: (i) automatic 

media annotation with object labels, free text description, moderation flags (NSFW, disturbing content), action 

recognition, celebrity recognition and meme/non-meme labels; (ii) visual concept similarity and retrieval 

enabling the users to create their own models for retrieving relevant content based on visual features that fit to 

their needs and purposes; as well as (iii) near-duplicate detection for images and videos. 

The Media Annotation Service has been updated by the consideration of an effective model compression 

functionality mainly applied on heavy annotation models to decrease their inference time and the total storage 

requirements of the system. In addition, a state-of-the-art multi-modal hate speech recognizer has been 

developed for detecting hateful memes with a potential moderation flag raising future usage. A saliency 

detection model has been developed in order to provide the users with insights into the areas of their assets that 

attract visual attention. The deployed model is capable of achieving state of the art results. Finally, several 

updates on the previously deployed face blurring model have taken place in the direction towards efficiency and 

effectiveness in order to optimise its performance. These updates have led to a significant reduction in 

processing time, resulting in a four-fold increase in efficiency. As a result, the model’s deployment is more user-

friendly, as it can deliver outputs more quickly and with greater reliability. 

Further experiments have proved the robustness of CLIP as a multimodal vectorizer module of our Retrieval 

system. ALBEF proved to be a more advantageous model in terms of both the retrieval quality and search and 

encoding times. For this reason, we decided to provide an application that allows you to choose one between 

the two encoders to study, CLIP or ALBEF. Moreover, we provided a more formal description of the 

Recommender System. Finally, the experiments to evaluate the performance of the RS have proved that it can 

achieve good levels of Mean Average Precision under two different experimental setups.  
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Annex I: MAAM - Content Retrieval Experiment 

In the Figures A.1-A.6, we present scatter plots of similarity vs. sum of relevant object area for image based 

similarity as well as bounding box based similarity and different feature extractors. 

 
Figure A.1: Each scatter plot point represents a candidate image of the MS-COCO validation set (1000 randomly sampled per object 

category). The maximum cosine similarity between prototypes’ CLIP feature vectors and candidate image’s CLIP feature vector is on Y-axis 

and sum of area occupied by bounding boxes containing the object of interest is on X-axis. Red x denotes images without the object and 

blue dots denote images with the object. The more distinct the Y-axis distributions of the two the better the performance is based on an 

optimal threshold. 
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Figure A.2: Each scatter plot point represents a candidate image of the MS-COCO validation set (1000 randomly sampled per object 

category). The maximum cosine similarity between prototypes’ ViT feature vectors and candidate image’s ViT feature vector is on Y-axis 

and sum of area occupied by bounding boxes containing the object of interest is on X-axis. Red x denotes images without the object and 

blue dots denote images with the object. The more distinct the Y-axis distributions of the two the better the performance is based on an 

optimal threshold. 
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Figure A.3: Each scatter plot point represents a candidate image of the MS-COCO validation set (1000 randomly sampled per object 

category). The maximum UQI between prototype images and each candidate image is on Y-axis, and sum of area occupied by bounding 

boxes containing the object of interest is on X-axis. Red x denotes images without the object and blue dots denote images with the object. 

The more distinct the Y-axis distributions of the two the better the performance is based on an optimal threshold. 
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Figure A.4: Each scatter plot point represents a candidate image of the MS-COCO validation set (1000 randomly sampled per object 

category). The maximum cosine similarity between all prototypes’ CLIP feature vectors and all candidate image cropped bounding boxes’ 

CLIP feature vectors is on Y-axis and sum of area occupied by bounding boxes containing the object of interest is on X-axis. Red x denotes 

images without the object and blue dots denote images with the object. The more distinct the Y-axis distributions of the two the better the 

performance is based on an optimal threshold. 
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Figure A.5: Each scatter plot point represents a candidate image of the MS-COCO validation set (1000 randomly sampled per object 

category). The maximum cosine similarity between all prototypes’ ViT feature vectors and all candidate image cropped bounding boxes’ 

ViT feature vectors is on Y-axis and sum of area occupied by bounding boxes containing the object of interest is on X-axis. Red x denotes 

images without the object and blue dots denote images with the object. The more distinct the Y-axis distributions of the two the better the 

performance is based on an optimal threshold. 
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Figure A.6: Each scatter plot point represents a candidate image of the MS-COCO validation set (1000 randomly sampled per object 

category). The maximum UQI between all prototype images and all candidate image cropped bounding boxes is on Y-axis and sum of area 

occupied by bounding boxes containing the object of interest is on X-axis. Red x denotes images without the object and blue dots denote 

images with the object. The more distinct the Y-axis distributions of the two the better the performance is based on an optimal threshold. 
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Annex II: Media Annotation Service gRPC API 

 

Table B.1: The Media Annotation Service gRPC API 

syntax = "proto3"; 
 
service MediaAnnotationServer { 
    // Server streaming annotation endpoints 
    rpc ImageAnnotationStream(ImageAnnotationRequest) returns (stream 
ImageAnnotationStreamResponse); 
    rpc ImageAnnotationStreamBatch(ImageAnnotationRequestBatch) returns (stream 
ImageAnnotationStreamResponseBatch); 
    rpc VideoAnnotationStream(VideoAnnotationRequest) returns (stream 
VideoAnnotationStreamResponse); 
 
    // Unary annotation endpoints 
    rpc ImageAnnotation(ImageAnnotationRequest) returns (ImageAnnotationResponse); 
    rpc ThreeDAnnotation(ThreeDAnnotationRequest) returns (Annotation3dResponse); 
    rpc VideoAnnotation(VideoAnnotationRequest) returns (VideoAnnotationResponse); 
 
    // Single model endpoints 
    rpc ImageActionRecognition(AnnotationRequest) returns 
(ImageActionRecognitionResponse); 
    rpc ImageCaptioning(AnnotationRequest) returns (ImageCaptioningResponse); 
    rpc ImageCrossModalEmbedding(AnnotationRequest) returns 
(ImageCrossModalEmbeddingResponse); 
    rpc ImageDisturbingContentDetection(AnnotationRequest) returns 
(ImageDisturbingContentDetectionResponse); 
    rpc ImageFaceRecognition(AnnotationRequest) returns (ImageFaceRecognitionResponse); 
    rpc ImageMemeDetection(AnnotationRequest) returns (ImageMemeDetectionResponse); 
    rpc ImageNSFWDetection(AnnotationRequest) returns (ImageNSFWDetectionResponse); 
    rpc ImageObjectDetection(AnnotationRequest) returns (ImageObjectDetectionResponse); 
    rpc ImageRegionFeatureExtraction(AnnotationRequest) returns 
(ImageRegionFeatureExtractionResponse); 
    rpc VideoActionRecognition(AnnotationRequest) returns 
(VideoActionRecognitionResponse); 
    rpc VideoDisturbingContentDetection(AnnotationRequest) returns 
(VideoDisturbingContentDetectionResponse); 
    rpc VideoFaceBlurring(AnnotationRequest) returns (VideoFaceBlurringResponse); 
    rpc VideoFaceRecognition(AnnotationRequest) returns (VideoFaceRecognitionResponse); 
    rpc VideoNSFWDetection(AnnotationRequest) returns (VideoNSFWDetectionResponse); 
    rpc VideoObjectDetection(AnnotationRequest) returns (VideoObjectDetectionResponse); 
} 
 
message AnnotationRequest { 
    // asset_url and asset_data are mutually exclusive 
    string asset_url = 1; 
    bytes asset_data = 2; 
} 
 
message ImageAnnotationRequest { 
    // image_url and image_data are mutually exclusive 
    string image_url = 1; 
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    bytes image_data = 2; 
} 
 
message ImageAnnotationResponse { 
    // Its value should be interpreted as documented 
[here](https://grpc.github.io/grpc/core/md_doc_statuscodes.html) 
    // 0 means OK, non-zero values mean error 
    int32 status = 1; 
 
    // If set, status will be non-zero and this field will describe the error that 
happened. 
    string error_msg = 2; 
 
    repeated string valid_models = 3; 
 
    ImageActionRecognitionResponse image_action_recognition_result = 10; 
    ImageCaptioningResponse image_captioning_result = 11; 
    ImageCrossModalEmbeddingResponse image_cross_modal_embedding_result = 12; 
    ImageDisturbingContentDetectionResponse image_disturbing_content_detection_result = 
13; 
    ImageFaceRecognitionResponse image_face_recognition_result = 14; 
    ImageMemeDetectionResponse image_meme_detection_result = 15; 
    ImageObjectDetectionResponse image_object_detection_result = 16; 
    ImageNSFWDetectionResponse image_nsfw_detection_result = 17; 
} 
 
message ImageAnnotationStreamResponse { 
    oneof response { 
        ImageActionRecognitionResponse image_action_recognition_result = 10; 
        ImageCaptioningResponse image_captioning_result = 11; 
        ImageCrossModalEmbeddingResponse image_cross_modal_embedding_result = 12; 
        ImageDisturbingContentDetectionResponse 
image_disturbing_content_detection_result = 13; 
        ImageFaceRecognitionResponse image_face_recognition_result = 14; 
        ImageMemeDetectionResponse image_meme_detection_result = 15; 
        ImageObjectDetectionResponse image_object_detection_result = 16; 
        ImageNSFWDetectionResponse image_nsfw_detection_result = 17; 
    } 
} 
 
message VideoAnnotationRequest { 
    // video_url and video_data are mutually exclusive 
    string video_url = 1; 
    bytes video_data = 2; 
} 
 
message VideoAnnotationResponse { 
    // Its value should be interpreted as documented 
[here](https://grpc.github.io/grpc/core/md_doc_statuscodes.html) 
    // 0 means OK, non-zero values mean error 
    int32 status = 1; 
 
    // If set, status will be non-zero and this field will describe the error that 
happened. 
    string error_msg = 2; 
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    repeated string valid_models = 3; 
 
    VideoActionRecognitionResponse video_action_recognition_result = 10; 
    VideoDisturbingContentDetectionResponse video_disturbing_content_detection_result = 
13; 
    VideoFaceRecognitionResponse video_face_recognition_result = 11; 
    VideoNSFWDetectionResponse video_nsfw_detection_result = 14; 
    VideoObjectDetectionResponse video_object_detection_result = 12; 
} 
 
message VideoAnnotationStreamResponse { 
    oneof response { 
        VideoActionRecognitionResponse video_action_recognition_result = 10; 
        VideoDisturbingContentDetectionResponse 
video_disturbing_content_detection_result = 13; 
        VideoFaceRecognitionResponse video_face_recognition_result = 11; 
        VideoNSFWDetectionResponse video_nsfw_detection_result = 14; 
        VideoObjectDetectionResponse video_object_detection_result = 12; 
    } 
} 
 
message ThreeDAnnotationRequest { 
    string asset_url = 1; 
     
    // The format of the 3D object. Available values are obj, off, ply, stl, glb, gltf 
    string asset_type = 2; 
} 
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