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Executive Summary 

This deliverable reports on the work carried out in the MediaVerse WP3 - Next Generation Content Management, 

Understanding and Interlinking, documenting the Content Discovery and Recommendation, Annotation and 

Adaptation Framework. It presents the work conducted until M21 by presenting the design, development, 

testing and deployment of a framework that provides a) content annotation, discovery, and retrieval - by using 

the annotations generated – as well as b) recommendations and c) adaptation of contents. These technologies 

have been developed to be modular microservices and integrated into the MediaVerse ecosystem. 

The annotation system answers the research question of how to add metadata to content shared on the 

MediaVerse platform in order to ease retrieval and management. The retrieval system addresses the research 

question of how to look for multimodal content relying on both the generated annotations and commonalities 

among visual and textual clues detected from the content. The recommender system addresses the research 

question of how to support users of the platform to consume media by receiving suggestions based on similar 

content than those already seen. Finally, the adaptation framework addresses the research question of how to 

adapt content for distribution across and beyond the MediaVerse platform. 

LINKS led the conceptualisation of this deliverable, the editing of Section 3 and 4, Summary, Introduction and 

Conclusion, CERTH led the development and reporting of the annotation service in Section 2 and ATOS led the 

development and reporting of the media adaptation framework of Section 5.  

  



MediaVerse Project – Grant ID 957252 

Page 12 of 98 
 

1 Introduction 

Search and Recommendation are two important functionalities for digital asset management systems. The first 

allows a user to formulate a query and retrieve the corresponding most relevant results out of all content present 

inside the media platform, while the second aims to automatically suggest personalized content to a user based 

on his/her own interests. 

When it comes to Search, even though the query is usually formulated by the user in the form of text, the 

retrieved content should belong, in principle, to any type of media supported, if it is most relevant to the query, 

i.e., results should include images, videos. This requirement puts emphasis on the Search models to be able to 

operate in a shared semantic space, where content from all supported media types can be compared to each 

other and with the user query. To achieve this shared space of all media types there are at least two avenues.   

The first, discussed in Section 2, is to express all media into the same space where the query is formulated (i.e., 

the text space), reducing the problem to a text search. This approach has the advantage of being able to exploit 

all the tools that are available for text search, most of which are very fast and have good performance, while it 

has the downside of having to factor in the loss in information and accuracy that comes by reducing a different 

media type into text. Section 2 describes the media annotation tool that can produce accurate text annotations 

for any kind of media. The annotations not only describe objects present in the media but also the actions 

happening, and the faces depicted if those correspond to celebrities. Once these annotations are produced, they 

are used to represent the content in any text search.  

A second way, discussed in Section 3, is to embed content from different kinds of media directly into the same 

cross-modal semantic space where content becomes directly comparable in terms of Euclidian distance. This 

approach has the advantage of being able to capture the semantics of the content more comprehensively; 

however, it is harder to integrate with other existing metadata since there are no available search tools built 

explicitly around that. In Section 3, we describe the development of a cross-modal retrieval system leveraging a 

state-of-the-art cross-modal embedder and a very fast and scalable vector similarity search tool. 

Recommendation is another very important functionality to have in a social media. The goal is to improve the 

overall experience by suggesting relevant and novel content to the user autonomously. Most modern 

recommendation systems leverage the historical behaviour of the users of the social media, to recommend a 

content that a user has not seen but another user with close interests has. In MediaVerse, however, we do not 

want to centrally monitor user behaviours, therefore, in Section 4, we describe our effort to build a 

Recommender system that relies on contents posted by the same user, bypassing the need to centralize user 

behaviours on the platform. Similar to the retrieval system, the employed technology is based on cross-modality, 

so that different kinds of media can be suggested to the user. We present a method to generate seeds from a 

user’s previous posts and evaluate the performance in terms of serendipity of the recommended contents. 

Finally, Section 5 describes the Content Adaptation framework for the ingestion, manipulation, and sharing of 

content for all supported media types. One goal is to optimize the data format to for the most modern network 

technologies (i.e., 5G). An additional goal is to provide transformations that support low bandwidths and 

different kinds of screens: smartphones, tablets for the platform to be usable by any kind of user. After providing 

a detailed description on state-of-the-art content adaptation methods in previous deliverables, here we focus 

on the approach and tests made on real content and the transformation methods and integration for new media 

formats (i.e., 3D models). 
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2 New Media Understanding and Annotation Service 

This section describes the work conducted in T3.1. It mainly relates to automatic understanding and annotation 

of digital assets stored in MediaVerse nodes, such as images, videos and 3D content. Additionally, we provide 

details regarding the building of the API that supports the annotation service and the user-friendly model building 

service that will provide amateur users with tools, which will enable them to create new models that fit their 

own needs. Figure 1 depicts the interactions between the MediaVerse node’s modules and the annotation 

service. When a user uploads an asset (image, video or 3D model) through the gateway and the UI, the Digital 

Asset Management module (DAM) call the Annotation service to obtain the annotations described in the 

following sections. These annotations are then indexed in the node’s index (Apache SOLR) to facilitate search 

and retrieval. At retrieval time, the user can issue filter parameters alongside the text query to find the most 

relevant assets. For example, for a user that needs an image depicting at least one person and a dog, but not 

being a meme image, the search module can generate the appropriate SOLR query that leverages image 

annotations such as meme detection (Section 2.1.1) and object detection. In a similar manner, the search module 

can leverage video and 3D content annotations.   

  

Figure 1: Interactions between the MediaVerse node’s modules and the annotation service. 

2.1 Images 

In 2.1, we elaborate on updated as well as new models deployed on our service that support image annotation. 

2.1.1 Meme Detection 

In this sub-section, we describe a methodology that improves the previously deployed model for Internet image 

meme detection proposed in D3.1 - Next Generation Content Model and Algorithms for New Media Types1. The 

new method utilises the visual part of image memes as instances of the regular image class and the initial image 

memes as instances of the image meme class to force the model to concentrate on the critical parts that 

characterise an image meme. Additionally, we employ a trainable attention mechanism on top of a standard ViT 

                                                           
1 https://mediaverse-project.eu/wp-content/uploads/2021/10/MediaVerse_D3.1_NextGeneration-ContentModel-and-
Algorithms-for-NewMediaTypes.pdf  

https://mediaverse-project.eu/wp-content/uploads/2021/10/MediaVerse_D3.1_NextGeneration-ContentModel-and-Algorithms-for-NewMediaTypes.pdf
https://mediaverse-project.eu/wp-content/uploads/2021/10/MediaVerse_D3.1_NextGeneration-ContentModel-and-Algorithms-for-NewMediaTypes.pdf
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architecture (Dosovitskiy et al. 2020) to enhance the model's ability to focus on these critical parts and make the 

predictions interpretable. We call the corresponding model MemeTector. The findings indicate that light visual 

part utilisation combined with sufficient text presence during training provides the best and most robust model, 

surpassing state of the art. This work was submitted for publication to a relevant journal. 

 

Figure 2: The Visual Part Utilisation process.  

Figure 2 illustrates the visual part utilisation process, which creates two sets of instances: one with image memes, 

and one with the corresponding visual parts2. Figure 3 presents Algorithm 1, which describes the extraction part 

of the algorithm. TextFuseNet (Ye, 2020) is a text detection deep neural network outputting a set of bounding 

boxes that correspond to text locations in the input image. The letter p is the percentage of the initial image’s 

area, which equals the rectangle’s area; r is the rectangle’s aspect ratio; fW and fH are the percentages of the 

initial image’s width W and height H, which define the rectangle’s centre. 

 

Figure 3: Meme visual part extraction algorithm. 

We utilise the extracted visual parts 𝑉𝑖 of image memes 𝑀𝑖 as regular image instances in order to force the 

model's focus on the critical parts that discriminate them. More precisely, we consider the set 𝑀 = {𝑀𝑖}𝑖=1
𝑘  that 

contains image memes and the set 𝑉 = {𝑉𝑖}𝑖=1
𝑘  that contains the corresponding visual parts. To assess the extent 

                                                           
2 The original image Mi, which belongs to the set of image memes M, is passed through the visual part extraction algorithm 
that identifies the corresponding visual part Vi, crops it and adds it to the set V. 
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to which VPU is useful, we also conduct experiments mixing instances of 𝑉 and web-scraped regular images for 

the construction of regular images class 𝑅. Additionally, given the inherent text presence in image memes 

another crucial aspect to consider is the extent to which text presence in regular images affects the model’s 

robustness. Hence, we consider two more sets as pools for 𝑅 construction, namely 𝑅𝑝 = {𝑅𝑖
𝑝

}
𝑖=1

𝑘
 for web-

scraped regular images with text presence and 𝑅𝑎 = {𝑅𝑖
𝑎}𝑖=1

𝑘  for web-scraped regular images with text absence. 

The model's objective is to correctly classify the instances of the two sets, 𝑀 and 𝑅, with: 

𝑅 = {𝑉𝑖}
𝑖=1
𝑘⋅(1−𝑃𝑊)

∪ {𝑅𝑖
𝑝

}
𝑖=1

𝑘⋅𝑃𝑊⋅𝑃𝑇
∪ {𝑅𝑖

𝑎}
𝑖=1
𝑘⋅𝑃𝑊⋅(1−𝑃𝑇)

     (1) 

where 𝑃𝑊 and 𝑃𝑇 denote the fraction of web-scraped regular images out of the total number of regular images 

and the fraction of web-scraped regular images with text presence out of the total number of web-scraped 

regular images, respectively. It is important to note that with this formulation 𝑀 and 𝑅 preserve the same 

cardinality 𝑘. For more clarity, we list the utilized and generated sets along with a description in Table 1. 

Table 1: Description of utilized sets of images for the task of meme detection. 

SYMBOL DESCRIPTION 
𝑀  set of image memes that defines the class 

𝑉  set of extracted visual parts from set 𝑀  

𝑅𝑎 set of regular web-scraped images without text 

𝑅𝑝 set of regular web-scraped images with text 

𝑅  set of regular images that defines the class, it is a combination of parts from 𝑉 , 𝑅𝑎 and 𝑅𝑝 

The proposed model architecture expands upon a standard ViT by adding an attention module that compares 

the last layer’s class token’s embedding 𝑦 with the patch embeddings of previous layers {𝑧𝑙
1:𝑁} with 𝑙 being the 

layer index and 𝑁 the number of patches. More precisely, we compute the compatibility score: 

𝑠𝑙
𝑖 = 𝑣 × [𝑦; 𝑧𝑙

𝑖]       (2) 

where 𝑖 ∈ {1, . . . , 𝑁}, 𝑙 ∈ {1,3, . . . , 𝑛}, [⋅;⋅] denotes concatenation, × denotes dot product, and v is a trainable 

vector. Then, attention weights are calculated by applying the softmax function and the context vectors per layer 

are the weighted average of the layer’s patch embeddings. The concatenation of all context vectors is processed 

by three dense layers for the final prediction, the first two are GELU activated and the last has one sigmoid unit. 

For the image meme class and the visual parts set we consider the Facebook’s Hateful Memes dataset3, while as 

a pool for the regular images sets, we consider the Google’s Conceptual Captions dataset4. As a starting point for 

the image meme class 𝑀, we consider the 10,000 instances of the Hateful Memes dataset. Then, we extract the 

visual parts of these image memes resulting in 9,984 images considered as regular to form the set 𝑉. The mean 

area fraction across all 𝑉𝑖 ∈ 𝑉 is 64.3\%. For the remaining 16 images, the VPU algorithm was unable to find a 

rectangle with no overlap with text. Thus, for all four sets 𝑀, 𝑉, 𝑅𝑝 and 𝑅𝑎 we consider the same size of 𝑘=9,984 

instances. To do so, we discard the same 16 image memes from 𝑀 and sample from Google's Conceptual 

Captions dataset 𝑘=9,984 instances to form 𝑅𝑝 and another 𝑘=9,984 instances to form 𝑅𝑎, respectively. For 

sample mixing, to form the class of regular images 𝑅 we only need to determine 𝑃𝑊 and 𝑃𝑇. Also, to assess the 

impact of both VPU and text presence in the model's performance, we consider several synthesis scenarios 𝑆𝑖 =

(𝑃𝑊, 𝑃𝑇), with 𝑖 = 1, . . .13, for 𝑅, presented in Table 2. 

                                                           
3 https://ai.facebook.com/blog/hateful-memes-challenge-and-data-set/  
4 https://ai.google.com/research/ConceptualCaptions/  

https://ai.facebook.com/blog/hateful-memes-challenge-and-data-set/
https://ai.google.com/research/ConceptualCaptions/
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Table 2: Synthesis scenarios for regular images class construction based on PW and PT. 

𝑃𝑊 0% 33% 67% 100% 

𝑃𝑇 0% 0% 33% 67% 100% 0% 33% 67% 100% 0% 33% 67% 100% 

Furthermore, we consider the same scenarios both on the training and test sets and experiment with crossed 

scenarios (𝑆𝑖, 𝑆𝑗), e.g., the model is trained on 𝑆1 = (𝑃𝑤 = 0%, 𝑃𝑇 = 0%) but evaluated on 𝑆13 =

(𝑃𝑤 = 100%, 𝑃𝑇 = 100%), resulting in 13⋅13=169 crossed scenarios to analyse. For sample splitting, we initially 

select 85% training, 5% validation and 10% test samples for each set 𝑀, 𝑉, 𝑅𝑝 and 𝑅𝑎, and construct 𝑅 per split. 

For 𝑀 and 𝑉, we consider the same index split in order not to include the visual part 𝑉𝑖 in one split (e.g., training), 

and the initial image meme 𝑀𝑖 in another (e.g., test). The training and validation sets always derive from the 

same scenario 𝑆𝑖, while the evaluation is performed on all test scenarios 𝑆𝑗. 

We also compare our approach to other state of the art image classification models fine-tuned for the task. These 

competitive models are ViT, EfficientNetB5, ResNet50, and VGG16. After an ablation analysis concerning the best 

training configuration, we opt for the model trained on 𝑆9 = (𝑃𝑤 = 67%, 𝑃𝑇 = 100%) which from now on will 

be referred to as MemeTector. For comparison with the state-of-the-art models, we provide Tables 3 and 4 in 

which the superior performance of MemeTector is illustrated. 

Table 3: Models’ performance in terms of average binary accuracy across all crossed scenarios. 

MODEL ACCURACY 
VGG16 91.36% 

ResNet50 92.31% 

EfficientNetB5 90.05% 

ViT 94.17% 

MemeTector 94.98% 

Table 4: Fraction of crossed scenarios that the MemeTector model surpasses competitive models. 

MODEL FRACTION 
VGG16 147/169=86.98% 

ResNet50 109/169=64.50% 

EfficientNetB5 162/169=95.86% 

ViT 148/169=87.57% 
 

2.1.2 Action Recognition 

The task of action recognition is typically considered for videos. Section 2.2.1 elaborates our work on video action 

recognition related to the annotation service. However, images may also contain static actions that could be 

recognized and that would provide the user with valuable context. For instance, typical image-oriented models 

would just recognize the person, the racket, and the ball in the photo of Roger Federer depicted in Figure 4. By 

applying action recognition, the corresponding action (“playing tennis”) could be detected and used in asset 

retrieval. To this end, we consider the ResNet152 deep neural network trained on the Kinetics400 dataset5. 

                                                           
5 Some examples are cleaning pool, crying, driving car, eating chips, parkour, playing guitar, reading book and rock climbing. 
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Figure 4: Roger Federer playing tennis. 

2.1.3 Disturbing Content Detection 

Disturbing content on images refers to content that depicts humans or animals subjected to violence, harm, and 

suffering that can cause feelings of worry, concern, or anxiety to the viewer. In many professions, such as 

journalism, employees are often exposed to content generated by users, and inevitably, they are exposed to 

disturbing content that could cause emotional traumas. For instance, Russia’s invasion of Ukraine resulted in the 

generation of a large amount of such content that journalists face daily. Therefore, developing automated 

methods to detect disturbing visual content is of utmost importance. Such a model has been built in the 

framework of T5.1 regarding content moderation and is now part of the media annotation service. More details 

on the model building and experiments will be available in D5.4 - Content moderation toolset. 

2.2 Videos 

In 2.2, we elaborate on the models that are deployed on our service and support video annotation. In addition 

to the typical video-oriented models, we present repurposed models primarily built for image annotation that 

we utilise to extract further information from video frames. 

2.2.1 Action Recognition 

Related Work 

Video classification is an active field of study that has attracted great attention lately. The initial attempts 

consider 3D convolutions as an extension to 2D convolutions, present in the well-known image classification 

architectures to take into account the time dimension of videos in the processing, and take advantage of large 

receptive fields for long-term dependencies (Ji et al. 2013; Karpathy et al. 2014; Tran et al. 2015). A tweak 

proposed by Carreira and Zisserman (2017) to inflate the ImageNet pre-trained weights as a starting point for 

training 3D convolutions resulted in state-of-the-art performance of the widely used I3D architecture. In 

addition, other simpler models performing aggregation of frame-level predictions have been proposed (Wang et 

al. 2016). Two-stream networks have also been employed for action recognition either using single frames as 

input to the first stream and the optical flow as input to the second stream (Simonyan & Zisserman 2014) or 

using a slow stream of low frame rate and a fast stream of high frame rate, but with lower channel capacity, 

namely the widely adopted SlowFast architecture (Feichtenhofer et al. 2019). Moreover, the recently proposed 

X3D architecture (Feichtenhofer 2020) achieves great performance by expanding a tiny 2D image classification 

architecture along multiple network axes, in space, time, width and depth. However, although all architectures 

until 2020 are based on convolutions, in 2021 the state of the art is overwhelmed by transformer-based 
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architectures that expand the Vision Transformer (ViT) (Dosovitskiy et al. 2020) for images. For instance, ViViT 

investigates four different architectures to handle the spatial and temporal information either by processing all 

patches at once or by separating the spatial from the temporal analysis of the signal in multiple ways (Arnab et 

al. 2021). Also, Bertasius et al. (2021) study five space-time self-attention schemes to finally propose 

TimeSformer architecture. Finally, Video Swin transformers utilise the Swin Transformer architecture (Liu et al. 

2021a) and expand it to videos achieving the current top-1 accuracy on multiple benchmarks (Liu et al. 2021b). 

Pre-trained Models 

To produce tags for videos we rely on four state-of-the-art pre-trained deep learning architectures for video 

classification: I3D, SlowFast, TimeSformer and Video Swin Transformer. We consider three python libraries, 

namely GluonCV6, MMAction27 and Video-Swin-Transformer8, which make these models publicly available to 

compare them with regard to outcome quality as well as computational cost at inference time. More precisely, 

we consider I3D inception V1, SlowFast 4x16 ResNet50, TimeSformer divST 8x32x1 and Video Swin Transformer 

tiny version all pre-trained on Kinetics-400 (Kay et al. 2017) dataset that categorises videos in 400 different 

activities9. 

Video Processing Pipeline 

The videos uploaded in MV nodes are of varying length, which can exceed seconds. Most video classification 

datasets contain videos of a few seconds and while theoretically the corresponding pre-trained models can 

handle any length, in practice large videos are intractable for most GPUs. Additionally, a video might contain 

several parts of different nature and each part could potentially be classified differently from the others. Having 

these two things in mind, we consider a very simple heuristic pipeline consisting of video splitting before the 

processing part and tag aggregation after it, to avoid model confusion as well as computational inefficiency. 

 
Figure 5: Video splitting. 

                                                           
6 https://cv.gluon.ai/  
7 https://github.com/open-mmlab/mmaction2  
8 https://github.com/SwinTransformer/Video-Swin-Transformer  
9 https://deepmind.com/research/open-source/kinetics  

https://cv.gluon.ai/
https://github.com/open-mmlab/mmaction2
https://github.com/SwinTransformer/Video-Swin-Transformer
https://deepmind.com/research/open-source/kinetics
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In Figure 5, we present the first stage of the pipeline namely video splitting in coherent parts. First, we uniformly 

downsample and resize the frames (these are not mandatory steps, but they reduce the computation time 

without significant accuracy loss - here we resize to 50x50 but do not downsample) and then we calculate 

Pearson correlation between consecutive frames (flattened). Additionally, we smooth the correlation trajectory 

with the moving average filter of order 2, to avoid random spikes. To identify big discrepancies that potentially 

are transition points, we set a threshold and extract the corresponding video segments between the transition 

points. Then, if the segments are larger than 10 seconds, we re-segment them to have a maximum length of 10 

seconds. Finally, for the second stage of our pipeline, namely tag aggregation, after passing each segment to the 

video classification model we end up with multiple tags from which we finally keep only the unique ones. 

In that way, (a) we do not process video segments that contain diverse semantics, which might confuse the 

model, (b) we keep the computational cost at affordable levels, and (c) we obtain multiple tags per video if it 

contains multiple parts of different nature. 

Experimental Results 

We consider three example videos as input to our pipeline to assess its efficiency with respect to using different 

video classification models. The first is a news video template10 containing multiple distinct temporal segments 

of different activities (Figure 6), the second is a video recording of an aeroplane being on fire after a crash (Figure 

7), and the third is a short video showing tea pouring (Figure 8). Table 5 provides information for each video, 

such as the duration and the number of segments they are split for processing. After passing each input video to 

our pipeline, we obtain the aggregated outputs of each model as well as duration of video loading11, model 

loading and annotation, and illustrate the corresponding video classification model comparison, in Table 612. 

  
Figure 6: Indicative sample frames of the three example input videos: (a) news video template 

 
Figure 7: Indicative sample frames of the three example input videos: (b) aeroplane crash 

                                                           
10 https://www.youtube.com/watch?v=06vH-Uakx-w  
11 This is not a metric used for model selection but its value affects the total duration so we illustrate it for clarity. 
12 All experiments are conducted on a NVIDIA GeForce GTX 1080 GPU. 

https://www.youtube.com/watch?v=06vH-Uakx-w
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Figure 8: Indicative sample frames of the three example input videos: (c) tea pouring  

Table 5: Example video statistics. 

 DURATION SEGMENTS 
news video template 24.0 sec 6 

aeroplane crash 105.9 sec 11 

tea pouring 7.7 sec 1 

Table 6: Video classification models comparison in terms of produced tags and time consumption.  

 MODELS 

 I3D SlowFast TimeSformer Swin 

Kinetics-400 top-1 
accuracy* 

71.8% 75.3% 77.92% 78.8% 

News video template 

tags produced for the 
input demo video 

extinguishing 

fire 95% 

sailing 64% 

marching 34% 

answering 

questions 15% 

stretching arm 

2% 

extinguishing fire 

100% 

news anchoring 

75% 

marching 53% 

sailing 39% 

dancing ballet 4% 

stretching leg 2% 

extinguishing fire 

99% 

marching 54% 

answering questions 

38% 

sailing 26% 

exercising arm 7% 

extinguishing fire 

99% 

sailing 72% 

playing didgeridoo 

34% 

answering questions 

22% 

juggling balls 1% 

duration 

load video 1.07 sec 1.08 sec 1.03 sec 1.00 sec 

load model 0.29 sec 0.48 sec 2.21 sec 0.38 sec 

annotation 7.63 sec 3.87 sec 1.98 sec 23.02 sec 

total 8.99 sec 5.43 sec 5.22 sec 24.4 sec 

Aeroplane crash 

tags produced for the 
input demo video 

extinguishing 

fire 60% 

flying kite 28% 

hurdling 97% 
extinguishing fire 
68% 
abseiling 49% 

extinguishing fire 

97% 

using remote 

controller (not 

gaming) 71% 
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marching 15% 

driving car 14% 

water skiing 21% 
driving car 17% 
flying kite 8% 

using remote 

controller (not 

gaming) 74% 

flying kite 42% 

skydiving 29% 

extinguishing fire 

63% 

driving car 49% 

archery 30% 

flying kite 21% 

playing paintball 

18% 

duration 

load video 1.95 sec 1.93 sec 1.95 sec 1.84 sec 

load model 0.29 sec 0.58 sec 2.45 sec 0.40 sec 

annotation 43.43 sec 9.80 sec 4.02 sec 47.11 sec 

total 45.67 sec 12.31 sec 8.42 sec 49.35 sec 

Tea pouring 

tags produced for the 
input demo video 

making_tea 72% making_tea 93% making tea 99% folding napkins 25% 

duration 

load video 2.86 sec 3.11 sec 3.07 sec 2.79 sec 

load model 0.31 sec 0.59 sec 2.35 sec 0.47 sec 

annotation 2.92 sec 1.01 sec 0.41 sec 9.66 sec 

total 6.10 sec 4.72 sec 5.84 sec 12.92 sec 

Note: *Refers to the models that we used, not to the best results presented in the papers. 

It seems that all models produce meaningful tags for the videos of the example; however, some produce wrong 

labels (in most cases with low confidence). Although the video swin transformer is the best performing model 

on Kinetics-400, it fails to classify the tea pouring video to something similar at least as the other models did. In 

addition to that, it requires video splitting with third party libraries, which makes the whole process very slow. 

On the other hand, TimeSformer architecture not only provides quality tags for the example videos, but also it is 

the fastest model in video processing. A downside of TimeSformer is that it is slow in model loading, but in an 

efficient interface, the model loading is done once before processing multiple videos. Comparing SlowFast with 

TimeSformer we observe that it provides equivalent annotation quality, being 4-5 times faster at loading but 2 

times slower at processing. Finally, the I3D architecture, which is still relevant but a bit outdated, provides 

relevant tags and its loading is very fast, but video duration severely affects the processing time. 

Deployment Issues 

There is nowadays a wide variety of deep learning frameworks, each offering a unique view about how training 

and inference should be. However, for efficient model deployment, inference should not be tied to the 

framework that the model was initially created with, and even more generally should not be tied to the Python 

runtime. For this purpose, each framework has devised each own independent description format for their 

models; for example, Tensorflow has the SavedModel format and PyTorch has torchscript programs. ONNX fits 

the same landscape but did not originate from any framework; rather it is described as an open format built to 

represent machine learning models. Inference with any of these tools provides interoperability, performance 

benefits through optimizations, ability to invoke the models from languages like C instead of Python, and 

integration with existing tools like NVidia's Triton Inference Server, which the Media Annotation Server internally 
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uses for model inference. In summary, all of these are compelling reasons to require the export of the models of 

the Media Annotation Server in one of the aforementioned formats. 

Following the conclusions of our experiments, even though we initially selected the TimeSformer model for 

deployment, we realised that exporting it to ONNX format (or any other framework-agnostic format) is not yet 

supported by MMAction2. Consequently, we headed for our second-best option, namely the SlowFast 

architecture, for which similarly, GluonCV does not support ONNX exporting at the moment (while there are 

GitHub issues for this matter so it might be considered for the future). Fortunately, we encountered its 

implementation with pre-trained weights on Kinetics-400 provided by PyTorch13 that we then exported to ONNX 

format without any issues. Hence, we opt for it to be deployed in the Media Annotation API for video action 

recognition purposes. However, it is important to mention a shortcoming of this implementation: according to 

our experimentation up until now, it is not feasible to provide inputs with a different number of frames than the 

default one, which we alleviated by uniform sampling. Table 7 presents the corresponding annotations and 

performance metrics of the deployed model on the three example videos. Additionally, the declared top-1 

accuracy that it achieves on the Kinetics-400 dataset is 76.94%. 

Table 7: ONNX exported SlowFast PyTorch implementation performance metrics. 

DEMO VIDEO NAME NEWS VIDEO TEMPLATE AEROPLANE CRASH TEA POURING 

tags produced for the 
input demo video 

extinguishing fire 100% 

marching 72% 

crossing river 59% 

answering questions 15% 

dancing ballet 7% 

extinguishing fire 98% 
flying kite 96% 
diving cliff 89% 
passing American football 
(not in game) 39% 
driving car 31% 
motorcycling 20% 
bungee jumping 17% 

making tea 98% 

duration load video 1.10 sec 2.26 sec 2.68 sec 

load model 0.14 sec 0.13 sec 0.13 sec 

annotation 5.83 sec 8.10 sec 0.76 sec 

total 7.07 sec 10.49 sec 3.57 sec 

 

2.2.2 Expanding Image Models to Support Video Input 

Videos may contain objects, well-known persons, and disturbing scenes as well as images do. Hence, applying 

the corresponding image models of our service on video assets will provide further useful annotations. Of course, 

applying the models on all frames of input videos would be redundant as well as catastrophic in terms of service 

latency. Therefore, we consider temporal segmentation methods to select key-frames for analysis to annotate 

the video. 

                                                           
13 https://pytorch.org/hub/facebookresearch_pytorchvideo_slowfast/  

https://pytorch.org/hub/facebookresearch_pytorchvideo_slowfast/
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Object Detection 

Coherent-frame video parts are likely to contain the same objects. Based on that assumption, we first segment 

the input video into scenes using the method introduced in Video Processing Pipeline section and then randomly 

select one frame per scene. The object detection model’s output labels for several frames are finally returned 

along with the corresponding timestamps and confidence. 

Celebrity Recognition 

Following a similar path for face recognition, one frame per second is first selected using uniform random 

sampling. Then, face extraction based on MTCNN is performed per selected frame. Finally, after applying the 

VGGFace2 celebrity recognition model on all the cropped parts containing the extracted faces, it returns the 

names of all identified persons along with the corresponding timestamps and confidence. Note that if a person 

is identified multiple times in the video all occurrences are returned with different timestamps. 

Disturbing Content Detection 

Similarly to the previous tasks, in disturbing content detection we exploit the method presented in Video 

processing pipeline section to segment the input video into several scenes. Then, we keep one frame per scene, 

considering that the scene’s frames share similar context. Afterwards, we classify these frames as disturbing or 

non-disturbing by the model described above. Given that each frame represents a scene, it returns information 

about the scenes classified as disturbing. This information comprises the timestamp the scene starts, the end-

timestamp, and the corresponding confidence.  

2.3 3D Content 

As described in the deliverable D3.1 - Next Generation Content Model and Algorithms for New Media Types14, 

the annotation process of 3D scenes is inextricably connected to the representation of the 3D data. MediaVerse 

aims to cover a wide variety of representations. Τhis requirement has driven our decision with respect to the 

employed annotation model. In our initial efforts, we exploited BAAF-Net (Qiu et al., 2021), which is a State-of-

the-Art (SotA) network addressing the problem of semantic segmentation for indoor scenes. However, as any 

modern Artificial Neural Network (ANN) that deals with 3D data, there are several limitations that accompany 

BAAF-Net, with the most important being the lack of generalisation capabilities (Guo et al., 2020). This is mainly 

attributed to the lack of available public datasets for the corresponding task. For instance, S3DIS (Armeni et al., 

2016) and ScanNet (Dai et al., 2017) contain 13 and 21 classes, respectively. It becomes evident that the 

aforementioned raise an obstacle for the goals of MediaVerse, since end-users are context-unaware 3D content 

creators. Another important limitation concerns the inference time of SotA ANN models for 3D data, making 

them inadequate for real time 3D scene annotation. Finally, the last identified limitation is related to the fact 

that a single ANN cannot perform single 3D object annotation and 3D scene annotation. To achieve reliable 

annotation results for both 3D objects and 3D scenes, we should employ a different ANN for each task. 

Having all the above in mind, we followed a different course of action during the second phase of the project. 

More specifically, we focused on methodologies that can provide annotations in a broader range, reaching 

beyond the dataset that the network was trained on. 

                                                           
14 https://mediaverse-project.eu/wp-content/uploads/2021/10/MediaVerse_D3.1_NextGeneration-ContentModel-and-
Algorithms-for-NewMediaTypes.pdf  

https://mediaverse-project.eu/wp-content/uploads/2021/10/MediaVerse_D3.1_NextGeneration-ContentModel-and-Algorithms-for-NewMediaTypes.pdf
https://mediaverse-project.eu/wp-content/uploads/2021/10/MediaVerse_D3.1_NextGeneration-ContentModel-and-Algorithms-for-NewMediaTypes.pdf
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2.3.1 Multi-View Object Detection 

In the early stages of 3D annotation research, the focus was mainly on transforming the 3D data into 2D15. Such 

a transformation allowed researchers to leverage the tools created for the 2D image processing domain (which 

were of higher maturity). Among the existing practices in this direction, rendering the 3D scene to multi-view 

images appears as the most promising solution since it allows employing 2D Convolutional Neural Networks 

(CNN) on each of the rendered images. The work of (Su et al., 2015) appears to be the first milestone in multi-

view 3D processing. The introduced idea is simple yet powerful, as it can exploit the inherent characteristics of 

CNNs. Initially, a 3D shape is rendered by several different virtual cameras (e.g., simulating different perspectives 

of the same shape). Then, the obtained 2D images are analysed by a particular CNN to extract view-specific 

features. These are subsequently pooled across views and passed through a CNN to obtain a compact shape 

descriptor. Such an approach enables the employment of the same network for both 3D object classification and 

retrieval. Since the inaugural work of Su et al. (2015), several works (Kundu et al., 2020; Jaritz et al., 2019; Dai et 

al., 2018) have built on top of it to provide solutions for a wide variety of computer vision tasks (e.g., object 

classification, semantic segmentation, scene understanding, etc.). 

Following the paradigm of Su et al. (2015) and with 3D annotation as the ultimate task, we employ the multi-

view approach for three reasons. Firstly, we can take advantage of the ANNs that have been already deployed 

for image annotation (object detection, caption etc.). Moreover, we can benefit from all the developments of 

the 2D image processing domain, which is by far more studied than the 3D processing one. Finally, it gives 

MediaVerse the opportunity to cover a wider spectrum of concepts, given that public datasets for image 

annotation offer thousands of concepts (e.g., ImageNet).  

2.3.2 Framework for Multi-View Object Detection 

The following steps highlight the proposed Multi-View Object Detection pipeline: 

 Pre-processing of the 3D object/scene (format conversion, scaling, centering, default orientation). 

 Rendering the 3D object/scene to get the multi-view images for a set of parameters. 

 Inference using the 2D object detection network for each one of the images. 

 Aggregation of all the predictions into an annotation list. 

Technical Details 

The pre-processing procedure starts with the format conversion. 3D data come in many different formats; 

therefore, our pipeline should be able to process at least the most common of them. Since PyTorch3D16 is our 

main renderer, which supports only obj and ply formats, we also employ the Trimesh library17 for converting 

different formats to obj. Currently, the deployed solution supports the obj, glb, gltf, ply, off, and stl extensions. 

Following the format conversion process, the 3D object/scene is passed through the renderer for generating the 

multi-view images. The renderer depends on a series of parameters as presented below:  

 image_size: The size of the rendered 2D output image. The smaller the size, the more pixelated the 

image will appear.  

                                                           
15 Formally, colourful images are considered 3D data (two spatial dimensions; with the third being the colour). However, 

the dimensionality here expresses the spatial dimensions only, hence, images are abusively referred to as 2D. 
16 https://pytorch3d.org/  
17 https://trimsh.org/  

https://pytorch3d.org/
https://trimsh.org/
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 camera_dist: The distance between the camera and the object. 

 elevation: The angle between the vector that is formed from the object towards the camera and the 

horizontal plane y=0 (plane xz). It dictates the directions of the camera. 

 azim_angle Let’s say you have a vector from the object to the camera and you project it onto a horizontal 

plane y=0. The azimuth angle is then the angle between the projected vector and a reference vector at 

(0,0,1) on the reference plane (horizontal plane). In essence, it expresses the side (e.g., left side, right 

side, front view, back view, etc.) from which we are looking towards the object.  

The following code snippet describes the exact parameters used for the multi-view approach as implemented in 

the context of MediaVerse. 

{ 
“image_size”: 1024, 
“camera_dist”: [2], 

“elevation”: [0], 
“azim_angle”: [0, 45, 90 135, 180, 225, 270, 315, 360] 

} 

The selection of the aforementioned rendering parameters relies on preliminary experiments conducted on 

downloaded objects/scenes from the web. It is within our priorities to develop a pipeline that can work with any 

object. To this end, each object/scene is normalised to abide within the unit sphere. Hence, the camera, whose 

distance is set at 2, provides a nice overview of the object/scene. Moreover, having an elevation angle equal to 

0, simulates the camera placement of photos taken by human beings in the real world. Finally, the azimuth values 

of 0, 45, 90, 135, 180, 225, 270, 315, and 360 provide a spherical overview of the object/scene. We should note 

that a wide variety of parameter values have been tested throughout the preliminary experiments. However, 

the selected were the ones that systematically offered the most satisfactory results. 

Finally, each of the images is passed to the object detection model that is already deployed in the annotation 

API (see D3.1 - Next Generation Content Model and Algorithms for New Media Types18, for more details). The 

final annotation list contains the unique aggregated predictions of each multi-view image. 

2.3.3 Results of Multi-View Object Detection 

In this sub-section, we present some of the results using the multi-view pipeline for 3D annotation (Table 8 and 

9). In the absence of a suitable dataset, the results are presented in terms of visual (qualitative) inspection.  

Table 8: Example of 3D object annotation. 

EXAMPLE 3D 

Scenario User queries a 3D object to the 3D annotation service 

Request payload 

 

                                                           
18 https://mediaverse-project.eu/wp-content/uploads/2021/10/MediaVerse_D3.1_NextGeneration-ContentModel-and-
Algorithms-for-NewMediaTypes.pdf  

https://mediaverse-project.eu/wp-content/uploads/2021/10/MediaVerse_D3.1_NextGeneration-ContentModel-and-Algorithms-for-NewMediaTypes.pdf
https://mediaverse-project.eu/wp-content/uploads/2021/10/MediaVerse_D3.1_NextGeneration-ContentModel-and-Algorithms-for-NewMediaTypes.pdf
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Response success: 1 
detections {        
object: 'person' 
}   

Table 9: Example of 3D scene annotation. 

EXAMPLE 3D 

Scenario User queries a 3D scene to the 3D annotation service 

Request payload 

 
Response success: 1 

detections {        
object: 'potted plant', 'couch', 'chair', 'bed'} 
} 

The results demonstrate that the model correctly identifies the objects in both cases (single model and multi-

model scenes respectively). We note that in the case of the multi-model scene, all identified concepts are part 

of the scene, apart from the ‘bed’ that has been erroneously identified as an object. 

2.3.4 Limitations and Next Steps 

The employed multi-view approach is only an initial approach towards a reliable annotation tool for 3D objects 

and scenes. Despite the encouraging results, it faces some limitations that should be addressed. The first relates 

to some particular scenes that depict indoor layouts. Such scenes may be enclosed within surroundings (e.g., 

walls). Hence, a normalised camera distance with a value of 2 would provide multi-view images completely 

outside the scene. Therefore, the rendered image will lack information and the annotation tool will not be able 

to detect any object. Hence, it is within our scope to establish a pipeline that will also examine the scene at 

different distance values. The second limitation is in line with the fact that the renderer has a strong impact on 

the resolution of the 3D object/scene. Similar to low image resolution, when the number of vertices in the mesh 

is low, the rendered multi-view images lack quality and therefore, the detector hardly annotates them correctly. 

Figure 9 shows that the quality of the mesh is low and, therefore, the detector cannot provide meaningful results. 

 

Figure 9: An example of S3DIS dataset after mesh reconstruction. The low-quality rendering becomes evident. 
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Our priority is to face the described limitations and provide a more robust renderer for the 3D annotation task. 

Additionally, when it comes to direct 3D processing, the number of supported concepts is very limited due to the 

lack of a suitable dataset. Therefore, we are planning to extend our research to zero/few-shot learning (Zhao et 

al., 2021; Sharma & Kaul, 2020), to handle a wider spectrum of concepts through 3D processing. 

2.4 Non-AI-Expert Model Building Service 

Task 3.1 will not only provide powerful pre-trained models for automatic media annotation but also will enable 

non-AI-experts to build their own models for niche tasks pertinent to their work, through a user-friendly training 

module oriented to amateurs. 

2.4.1 Existing Related Services 

Before beginning to build our own user-friendly training module for MediaVerse, we start by investigating 

existing services and their features to maintain elements that serve the purpose of our module and discard others 

that defeat it. 

Model Building 

After extensive Google search, the following services for model building and training are identified as related to 

our work and are elaborated in Table 10. 

Table 10: Existing model building services. 

DeepVA, https://deepva.ai/  

It provides pre-trained models for face, logo, landmark 
recognition, and many other tasks. It also enables users to 
train their own models and expand upon the existing 
ones. Training data acquisition is said to be facilitated 
through automatic procedures. Finally, one appealing 
feature is that they claim that models can be built with 
only one image (or very few) through few shot learning 
techniques. 

pros: good interface, nice graphics, easy to use 

cons: it’s a black box, closed-source solution 

Create ML, https://developer.apple.com/documentation/createml  

This is a tool for Apple devices and operating systems like 
Swift and macOS playgrounds and is used to create and 
train custom machine learning models. It enables one to 
train models to perform tasks like recognizing images, 
extracting meaning from text, or finding relationships 
between numerical values. It provides a friendly 
environment for data ingestion and model training 
without the need of user defined architectural details. 

pros: nice instructions page, it is as high level as it should 

for a non-AI-expert 

cons: The tasks provided as options to the user could be 

even more abstract.  

 

Deep Learning Studio, https://deepcognition.ai/deep-learning-studio/  

It is free to use and can run locally or in the cloud. It 
provides developers with pre-configured environments. 
The GUI development platform makes building models 
efficient without coding. It supports Chainer, H20, Keras, 
Mxnet, Tensorflow, Caffe, Chainer, Pytorch. All models are 
saved as experiments and can be compared to previous 
work. You can switch back to old models if needed. To 

pros: it supports all deep learning elements a non-expert 

needs to build a model, from data ingestion through 

model building, tuning and deployment. 

cons: (1) data preparation is not so easy (certain naming 

conventions, csv file of images required by the user, no 

randomization supported), (2) not too high level (one 

https://deepva.ai/
https://developer.apple.com/documentation/createml
https://deepcognition.ai/deep-learning-studio/
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assist you with model optimization, tabular comparisons 
of all your model changes are available. You can upload 
data, it supports pre-trained models, it provides multiple 
GPUs for timely hyperparameter optimization and easy 
model deployment through REST API service. 

needs to know what flatten, dense, dropout, etc layers are 

and how they are used; you need to define the 

architecture and hyperparameter values, you just don’t 

code it) 

 

Tensorflow’s Deep Playground, https://playground.tensorflow.org/  

 It lets one to play with four simple datasets and construct 
simple feed-forward models to perform 2-class 
classification. Enables tweak of input features, number of 
units, learning rate, batch size, activation function, 
regularisation, data noise and split. It says it can be 
repurposed using the open GitHub repo, under Apache 
licence. 

pros: visualisation features 

cons: (1) only for educational purposes, too narrow in 

terms of datasets and model architectures, (2) does not 

present accuracy, only loss which is less intuitive for non-

experts 

ANNdotNET, https://github.com/bhrnjica/anndotnet  

A deep learning GUI that lets you build and train neural 
networks for many different classification and regression 
tasks. 

pros: supports many features to build a good model 

cons: it is low level in terms of machine learning so not 
oriented to non-AI-experts, you just don’t need to code 
the model and process 

NVIDIA DIGITS, https://developer.nvidia.com/digits  

It supports training of deep neural networks for image 
classification, segmentation, and object detection tasks. 
Also, it provides user-friendly interface for common deep 
learning procedures such as managing data, designing, 
and training neural networks on multi-GPU systems, 
monitoring performance in real time with advanced 
visualisations, and selecting the best performing model 
from the results browser for deployment. It is interactive 
so that the user can focus on designing and training 
networks rather than programming and debugging. 

pros: many useful features for deep learning experts 

cons: it is for data scientists 

MATLAB’s Deep Network Designer, https://www.mathworks.com/videos/interactively-build-visualize-and-
edit-deep-learning-networks-1547156558295.html  

It is a point-and-click tool for creating and modifying deep 
neural networks. 

pros: almost anything could be done by coding 

cons: it is still low level, one needs to know how to 
connect different layers, hyperparameter values etc. to 
build a model. Also, after that the training is not done 
through GUI you need to code that. 

ENNUI, https://math.mit.edu/ennui/  

It is a graphical tool for building neural network 
architectures and training them. It provides all standard 
layers (conv, dense, flatten, dropout, etc.) and activations 
(relu, sigmoid). You can export your trained model to 
python or julia. 

pros: easy to use, but needs deep learning knowledge 

cons: (1) needs expertise on model building, (2) does not 
support other datasets other than MNIST 

Azure Machine Learning, https://azure.microsoft.com/en-us/services/machine-learning/  

It enables users to build, deploy, and manage high-quality 

business-oriented machine learning models. 

pros: includes autoML feature 

cons: oriented to experts 

https://playground.tensorflow.org/
https://github.com/bhrnjica/anndotnet
https://developer.nvidia.com/digits
https://www.mathworks.com/videos/interactively-build-visualize-and-edit-deep-learning-networks-1547156558295.html
https://www.mathworks.com/videos/interactively-build-visualize-and-edit-deep-learning-networks-1547156558295.html
https://math.mit.edu/ennui/
https://azure.microsoft.com/en-us/services/machine-learning/
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Data Labelling 

In addition, annotation tools are partially related to the MediaVerse non-AI-expert model building service. The 

following annotation tools have been identified as related to our work: 

● Make Sense - https://www.makesense.ai/  

● CVAT - https://openvinotoolkit.github.io/cvat/about/ 

● Label Studio - https://github.com/heartexlabs/label-studio 

● doccano - https://github.com/doccano/doccano 

● prodigy - https://prodi.gy/  

2.4.2 Discussion 

The existing user-friendly deep learning services provide the convenience of data ingestion, preparation, pre-

processing, model building, training, and evaluation through graphical, easy to follow and use interfaces. 

However, almost all services target data scientists, engineers and machine learning experts that want to build 

models without the burden of coding. This means that the end user needs to be aware of all jargon (e.g., layers, 

activation functions, losses, hyperparameters, etc.) and be knowledgeable in terms of model construction 

process (e.g., how the layers should be connected). 

This should not be MediaVerse’s target, rather people from other domains, like news media, might want to build 

their own models and we could facilitate them with a high-level service. Only, DeepVA and Create ML are more 

abstract and require less details by the user which is closer to our idea of MediaVerse’s deep learning service. 

Nevertheless, they could be even more abstract for instance, when the user selects the task to be addressed 

instead of image classification, action classification, and object detection that may seem as jargon we could adopt 

a more descriptive route with questions to the user like:  

● What would you like to do? 

● Detect a person or multiple persons in an image? 

● Recognize human activity in videos? 

● Categorise the content of images? 
 

Then the service could select the most suitable task and model automatically. Finally, in terms of graphics and 

analytics provided to the user, the directions of DeepVA and Tensorflow’s Deep Playground seem appealing.  

2.4.3 Related Work 

Amateur users are not expected to put a lot of effort on data collection so we will have to provide a model 

building procedure that addresses the small training dataset issue. The most suitable direction for model building 

when only few data points are available is few-shot learning. Many studies have adopted the meta-learning or 

episodic training scheme to address few-shot scenarios. Learning class differences through few-shot training 

episodes on other tasks and then using a support set to obtain the task dependent information to evaluate the 

method on a test set is a typical approach. Other few-shot approaches exist involving data augmentation, and 

algorithm optimisation. Additionally, other options are available. For instance, Kolesnikov et al. (2020) find that 

transfer learning from a large enough model pre-trained on a large and diverse enough dataset results in great 

few-shot performance on widely used benchmarks. Moreover, Chen et al. (2021) show that standard pre-training 

as well as a combination of standard pre-training and meta-learning result in comparable to state-of-the-art 

performance in few-shot scenarios. Finally, Chen et al. (2018) and Nakamura and Harada (2019) show that 

standard transfer learning can compete with state-of-the-art meta-learning algorithms in the few-shot setting. 

https://www.makesense.ai/
https://openvinotoolkit.github.io/cvat/about/
https://github.com/heartexlabs/label-studio
https://github.com/doccano/doccano
https://prodi.gy/
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2.4.4 Few-Shot Face Recognition 

Inspired by the simple yet effective Prototypical Networks methodology and the Classifier-Baseline as proposed 

by Chen et al. (2021), we experiment with few-shot face recognition using a widely used pre-trained back-bone 

architecture, namely the VGGFace2 (Cao et al. 2018). This model is a convolutional neural network pre-trained 

on a large corpus of image data (~3.3M) with the objective of face identification for 8631 identities and thus can 

potentially provide useful face descriptors of any identity. More precisely, we consider as a face descriptor of an 

input face image the vector extracted from the layer adjacent to the classifier layer. This leads to a 2048-

dimensional descriptor, which is then L2 normalised. To assess the model’s ability to provide useful face 

descriptors of new identities, for evaluation we consider a different dataset than the one it was trained on, 

namely the CelebA dataset (Liu et al. 2015). CelebA contains 202,599 images with faces of 10,177 identities. 

Figure 10 illustrates the distribution of images per identity.19 

The use case scenario is face verification, namely the user provides the system with k different images of an 

identity’s face (support set) and given a new image with a face (query) the system outputs whether it is of the 

same identity or not. To simulate this scenario based on the CelebA dataset, we randomly sample k+1 images of 

a randomly sampled identity considering the first k as support set and the last 1 as query. We do that n=1000 

times. Additionally, we randomly sample k+1 images of two randomly sampled identities: the first k from the 

first and the last 1 from the second. Again, we do that n=1000 times. In that way, we obtain 2000 random sets 

of k+1 samples to perform our experiment. Half of them concern the same identity and the other half concern a 

different identity. 

 
Figure 10: Number of images per identity histogram. 

All 2000 * (k+1) images are provided as input to VGGFace2 which outputs the corresponding embeddings. The 

average embedding across the k support samples is considered as each identity’s prototype and then we 

compute Euclidean distance and cosine similarity between the prototype and the query for all examples. We 

expect the distribution of distances among images of the same identity to have smaller values than the 

distribution of distances among images of different identities (opposite for similarity) and to be easy to 

discriminate between the two distributions using an appropriate threshold. To find the most suitable threshold 

we compute binary classification accuracy (same vs. different identity) for each candidate threshold and select 

the best. The candidate thresholds for Euclidean distance derive from the largest possible range [0,2] (note that 

the image embeddings are L2 normalised) as well as for cosine similarity being [-1,1]. 

                                                           
19 Unfortunately, CelebA does not provide the identity names to check for overlaps with VGGFace2 train split. Hence, we 

additionally performed the same experiment using the VGGFace2 test split that contains 500 distinct identities. The results 
are very similar in both experiments, so we only present the results from the CelebA dataset here. 
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Table 11: Binary classification performance for each k 

 EUCLIDEAN DISTANCE COSINE SIMILARITY 

k Accuracy Threshold Accuracy Threshold 

1 88.2% 1.09 88.1% 0.405 

2 90.2% 0.97 90.3% 0.465 

3 93.9% 0.925 93.6% 0.495 

4 92.9% 0.92 92.9% 0.490 

5 93.7% 0.885 93.5% 0.530 

6 94.0% 0.87 93.6% 0.525 

7 94.3% 0.875 93.9% 0.545 

8 95.1% 0.88 95.0% 0.540 

9 94.1% 0.89 94.0% 0.510 

10 94.8% 0.86 94.8% 0.540 

11 94.3% 0.885 94.0% 0.540 

12 94.8% 0.845 94.6% 0.565 

13 95.5% 0.855 95.3% 0.555 

14 94.3% 0.86 94.3% 0.555 

15 93.8% 0.825 93.8% 0.585 

16 94.8% 0.85 94.5% 0.560 

17 95.5% 0.86 95.4% 0.525 

18 95.2% 0.825 95.1% 0.585 

19 95.2% 0.855 95.1% 0.550 

20 94.7% 0.855 94.3% 0.550 

 

 
Figure 11: Binary classification performance for each k. 
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In Table 11 and Figure 11, we present the corresponding results for different support set sizes k=1,...,20. It seems 

that the performance is not bad even in the case of one-shot face recognition, which results in 88.2% accuracy 

when using Euclidean distance and 88.1% when using cosine similarity. Also, as the number of support examples 

increases the accuracy is increased as well, reaching 95.5% when k=13 and then remains around that plateau. 

The appropriate threshold is not flat over different k, rather it decreases with k for the Euclidean distance case. 

This is an expected effect as distances among instances of the same identity are expected to get smaller when 

averaging across a cloud of points to compute the identity’s prototype. Similarly, as similarity is the opposite of 

distance, it is expected that the threshold in the case of cosine similarity increases with k. In Figures 12, 13 and 

14, we present the distance and similarity distributions of same and different identities for 1-shot, 5-shot and 

10-shot face recognition, respectively. 

 
Figure 12: Histograms of distance and similarity for the same and different identity (k=1). 

 
Figure 13: Histograms of distance and similarity for the same and different identity (k=5). 

 
Figure 14: Histograms of distance and similarity for the same and different identity (k=10). 
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2.4.5 Few-Shot Image Classification 

Recently, many works argued that typical fine-tuning of pre-trained models can lead to great few-shot 

performance and sometimes even better than using the standard meta-learning techniques (Kolesnikov et al. 

2020; Chen et al. 2021; Chen et al. 2019; Nakamura and Harada 2019). The critical point is that the upstream 

training dataset must be diverse and big enough (a lot bigger than ImageNet-1k) to let deep models gain great 

transferable knowledge.  

We replicate experiments from BiT paper20 but also using other pre-trained models and exploring the 

hyperparameter space to obtain optimised few-shot performance in four datasets (i.e., CIFAR10, MNIST, 

Fashion-MNIST, and 400-bird-species)21. More precisely, we consider the timm22 implementations of ResNet18 

pre-trained on ImageNet-1k as a baseline (R18), ViT small pre-trained on ImageNet-21k (ViT) and ResNetV2 50x3 

pre-trained on ImageNet-21k (BiT) as well as a small parameter grid: 

● learning rate: {0.01, 0.003} 

● batch size: {32, 128} 

● number of shots (k): {5, 10, 50} 

● number of training iterations: {500, 1000} 

Additionally, for each experimental configuration we consider three repetitions using different random seeds to 

obtain performance variation estimations. In total, we conducted 864 reproducible experiments and the 

corresponding code is available in our GitHub repository23. 

As a pre-processing step on the training data, we consider grey-scale expansion from 1 to 3 dimensions (if 

applicable), resize, random crop, random horizontal flip, and standardisation per channel. Then, for each 

experiment, we randomly sample k images per class and form the training batches24. For the evaluation, we 

consider the whole test splits, and we apply grey-scale expansion, if applicable, resize and standardisation per 

channel. Unfreezing the whole model or a part of it did not bring any significant gains so we keep the pre-trained 

models frozen and only train the classification layers. During training, we reduce the learning rate by a factor of 

10 at 30%, 60% and 90% of the iterations. We consider the categorical cross-entropy loss function and the 

stochastic gradient descent optimizer. The training is conducted on a GTX1080 for CIFAR10, MNIST, Fashion-

MNIST and on a RTX3060 for 400-bird-species. Finally, we evaluate the models’ performance using the standard 

accuracy metric. In Figure 15, we present the results in terms of performance and time for all hyperparameter 

values. Each blue box plot represents the accuracy distribution, and each red box plot represents the time 

distribution, over all experiments with a certain hyperparameter value (e.g., when training ResNet18 or when 

k=5 shots are used per class). We observe high accuracy scores in all datasets, and more precisely ViT 

outperforms R18 and BiT. BiT yields good results in many cases as well, however, it is a lot slower to train. R18 is 

very fast to train but it exhibits poor performance as expected. 

                                                           
20 https://arxiv.org/abs/1912.11370  
21 https://www.kaggle.com/gpiosenka/100-bird-species  
22 https://github.com/rwightman/pytorch-image-models  
23 https://github.com/ckoutlis/mv-model-building-gui  
24 If the size of the few-shot training dataset is smaller than the batch size we resample with replacement. 

https://arxiv.org/abs/1912.11370
https://www.kaggle.com/gpiosenka/100-bird-species
https://github.com/rwightman/pytorch-image-models
https://github.com/ckoutlis/mv-model-building-gui
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Figure 15: Distribution of accuracy (blue) and duration (red) for each hyperparameter value and dataset. 

The main reasons for that are (a) its low capacity and (b) the upstream training dataset’s size. Hence, ViT seems 

to provide the best trade-off between training time and performance. Also, the accuracy increases with k, which 

is an anticipated effect while time is not significantly affected. The number of iterations although it affects time, 

it does not seem to affect performance. Learning rate provides similar results in both cases and similar training 

times. Finally, batch size results in similar accuracy in both cases but time is significantly affected when a larger 

value is selected. Similar findings are encountered in the analysis of all datasets. 

To select the hyperparameters of the training process that will support the module for image classification, 

performance is equally important with time. So, we do not only search for the configuration that yields maximum 

accuracy rather we heuristically search for the most efficient configuration. For each k, we consider all conducted 

experiments and the corresponding (time, accuracy) tuples. First, we identify the experiment with maximum 

accuracy α, then we filter out all experiments with accuracy less than α-5% and finally from the remaining we 

opt for the experiment that needs the minimum time and call it ‘efficient’. In Figure 16, we present the results 

of this procedure for all datasets. In most cases, significant gains are obtained in terms of time with minimum 

losses in terms of performance. Table 12 presents the most efficient configuration for each k and dataset. 
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Figure 16: Heuristic approach for identification of the most efficient experimental configuration. 

Table 12: The most efficient experimental configurations per k and dataset 

 K 

 5 10 50 

CIFAR10 

model ViT ViT ViT 

learning rate 0.003 0.003 0.003 

batch size 32 32 32 

iterations 500 500 500 

accuracy 86.32% 89.70% 93.91% 

time 82.8 sec 80.7 sec 80.5 sec 

MNIST 

model ViT ViT ViT 

learning rate 0.01 0.003 0.01 

batch size 32 32 32 

iterations 500 500 500 

accuracy 74.43% 82.57% 90.56% 

time 81.7 sec 79.5 sec 78.4 sec 
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Fashion-MNIST 

model ViT ViT ViT 

learning rate 0.01 0.01 0.003 

batch size 32 32 32 

iterations 500 500 500 

accuracy 76.68% 77.91% 85.39% 

time 83.5 sec 81.1 sec 80.3 sec 

400-bird-species 

model ViT ViT ViT 

learning rate 0.01 0.01 0.01 

batch size 32 32 32 

iterations 500 500 500 

accuracy 95.22% 97.67% 97.73% 

time 52.7 sec 61.8 sec 129.6 sec 

Apparently, there is huge overlap in configuration hyperparameters across different datasets and number of 

shots k. In all scenarios, ViT model with batch size 32 and 500 iterations provide the most efficient configuration. 

Learning rate in most cases is 0.01, and thus we opt for it, although in 5/12 of the cases it is 0.003. It is important 

to mention that reported times include data loading, model loading, model training and model evaluation and 

that for 400-bird species the times are in general smaller because the training was performed on a better GPU. 

2.5 Deployment 

The media annotation service exposes a gRPC API that the MediaVerse DAM consumes. In addition to the 

bidirectional streaming endpoint, discussed in D3.1 - Next Generation Content Model and Algorithms for New 

Media Types25, we have implemented three unary RPC endpoints, ImageAnnotation, ThreeDAnnotation and 

VideoAnnotation, responsible for annotating images, 3D assets and videos respectively (Table 13). The 

motivation for these endpoints is that they are simpler to use, as the client does not need to implement a 

connection management scheme for handling the gRPC stream. In each case, the request message contains a 

URL to the media file that is to be analysed and the response message contains the results of running all the 

relevant to the media type annotation models. 

Table 13: Unary RPC endpoints 

syntax = "proto3"; 
 
service MVAnnotationServer { 
  rpc ImageAnnotation(ImageAnnotationRequest) returns (ImageAnnotationResponse); 
  rpc ThreeDAnnotation(ThreeDAnnotationRequest) returns (Annotation3dResponse); 
  rpc VideoAnnotation(VideoAnnotationRequest) returns (VideoAnnotationResponse); 
} 
 
message ImageAnnotationRequest { 
  string image_url = 1; 

                                                           
25 https://mediaverse-project.eu/wp-content/uploads/2021/10/MediaVerse_D3.1_NextGeneration-ContentModel-and-
Algorithms-for-NewMediaTypes.pdf  

https://mediaverse-project.eu/wp-content/uploads/2021/10/MediaVerse_D3.1_NextGeneration-ContentModel-and-Algorithms-for-NewMediaTypes.pdf
https://mediaverse-project.eu/wp-content/uploads/2021/10/MediaVerse_D3.1_NextGeneration-ContentModel-and-Algorithms-for-NewMediaTypes.pdf
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} 
message ImageAnnotationResponse { 
  int32 status = 1; 
  string error_msg = 2; 
 
  ImageActionRecognitionResponse image_action_recognition_result = 10; 
  ImageCaptioningResponse image_captioning_result = 11; 
  ImageCrossModalEmbeddingResponse image_cross_modal_embedding_result = 12; 
  ImageDisturbingContentResponse image_disturbing_content_result = 13; 
  ImageFaceRecognitionResponse image_face_recognition_result = 14; 
  ImageMemeDetectionResponse image_meme_detection_result = 15; 
  ImageObjectDetectionResponse image_object_detection_result = 16; 
} 
 
message ThreeDAnnotationRequest { 
  string asset_url = 1; 
  string asset_type = 2; 
} 
message ThreeDAnnotationResponse { 
  int32 status = 1; 
  string error_msg = 2; 
 
  repeated string object_detections = 10; 
} 
 
message VideoAnnotationRequest { 
  string video_url = 1; 
} 
message VideoAnnotationResponse { 
  int32 status = 1; 
  string error_msg = 2; 
 
  VideoActionRecognitionResponse video_action_recognition_result = 10; 
  VideoDisturbingContentResponse video_disturbing_content_result = 13; 
  VideoFaceRecognitionResponse video_face_recognition_result = 11; 
  VideoObjectDetectionResponse video_object_detection_result = 12; 
} 

As described in D3.1, the media annotation controller, shown above in Figure 17, implements the gRPC server 

that the clients connect to while the execution of the core models is delegated to an instance of the NVidia Triton 

Inference Server. That is, the controller accepts client requests and performs any pre-processing steps needed, 

then sends a gRPC request to the Triton server, post-processes the results and finally responds to the client. The 

only model that is not running on Triton is the 3D annotation one as many of the operations performed in 3D 

deep learning models have not yet been standardised and included in the ONNX opset. The 3D annotation model 

is thus implemented as a separate service based on Pytorch 3D, which the controller queries internally through 

a REST HTTP API. 
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Figure 17: The Media Annotation Service architecture. 
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3 Cross-Modal Retrieval Technology 

An Information Retrieval (IR) process begins when a user enters a query into the system. Queries are formal 

statements of information needs, for example, search strings in web search engines. In information retrieval a 

query does not uniquely identify a single object in the collection. Instead, several objects may match the query, 

perhaps with different degrees of relevancy. An object is an entity that is represented by information in a content 

collection or database. User queries are matched against all database objects; however, as opposed to classical 

SQL queries, in IR the results may or may not match the query exactly, so that they are typically ranked according 

to their relevance instead. This ranking of results is the key difference of information retrieval searching 

compared to database searching (Figure 18). 

 

Figure 18: Information retrieval. 

Typically, IR systems are designed to operate on one domain at the time (e.g., text vs text or image vs image), 

however, cross-modal retrieval aims to enable flexible retrieval experience across different modalities (e.g., 

texts vs. images). The core of cross modal retrieval research is to learn a common subspace where the items of 

different modalities could be directly compared to each other. 

In this section, the focus is on content retrieval, also called “search”, which requires a user to actively insert a 

query (a text or an image) as input. The user aim is to find the MediaVerse contents most similar to its input 

query regardless of it being a text or an image. Multimodal retrieval can be seen as a parallel process with respect 

to pure text-base one. It is necessitated because some assets do not have high quality text metadata provided 

by uploaders (because users do not provide that type of information), or annotation services in many cases suffer 

from a wrong labelling problem, leading to false positive results during retrieval. Hence, we need directly to 

process the content itself, extracting meaningful features from it. Extracting features directly from an image can 

provide us with more information than simply relying on image tags, such as the relative object position, their 

number or colour. Therefore, we are interested in how to extract efficiently information from data, which is 

modality agnostic, semantically relevant and not susceptible to errors due to previous annotations. 

3.1 Related Work 

To benefit from the abundance of multimedia data and make optimal use of the rapidly developing multimedia 

technology, we need automated mechanisms. These mechanisms establish a similarity link from one multimedia 

item to another one if they are semantically related, regardless of the type of modalities (e.g., text, visual or 

audio) of the items. Modelling of similarity links has traditionally focused mainly on single-modality scenarios. 

For instance, information retrieval has focused on bringing similar textual documents together, while content-

based image, video or audio retrieval has attempted the same for images, videos, and audio items, respectively.  

These areas of research dates to the mid-90s with the study of Mori et al. (1999) as a representative early work. 

Over time, research shifted towards learning joint multi-modal embedding spaces (Yang et al., 2016; Yang et al., 

2014) with techniques like kernel Canonical Correlation Analysis, graph-based methods (Zhai et al, 2014; Zhuang 

et al, 2013) and various ranking objectives (Hodosh et al., 2013). Over time, work explored many combinations 



MediaVerse Project – Grant ID 957252 

Page 40 of 98 
 

of training objective, transfer, and more expressive models and steadily improved performance (Kiros et al., 

2014; Faghri et al., 2017). 

Since features of different modalities usually have inconsistent distribution and representation, a modality gap 

needs to be bridged. A common approach to bridge the modality gap is representation learning. The goal there 

is to find (i.e., learn) projections of data items from different modalities into a common (modality agnostic) 

feature representation subspace in which the similarity between them can be assessed directly. A variety of 

cross-modal retrieval methods (Feng et al., 2014; Hardoon et al., 2004; Peng et al., 2016; Wang et al., 2013) have 

been proposed recently, which propose different ways of learning the common representation subspace. Cross-

modal retrieval (Wang et al., 2016) has attracted great research interest lately. (Chen et al., 2020) review the 

related literature and classify the models for this problem in four main categories, namely pairwise, adversarial, 

interaction and attributes learning models.  

In general, we can also separate the related work in: 1) methods that use large-scale visual-language pre-training 

of huge BERT-based models (the current state of the art results in image-text retrieval); 2) methods focusing on 

methodological improvements on neural network architectures that are trained on the dataset of interest, for 

example the MSCOCO, Flickr8K or Flickr30K.  

More precisely, Lu et al. (2019) extend the BERT model by adding also region features from an object detection 

model as input and a co-attention mechanism to introduce interactions in some layers. Chen et al. (2020) 

consider four pre-training tasks: masked language, masked region, image text matching and word region 

alignment. They mask one modality at a time unlike other previous studies and, they train with respect to one 

task per minibatch. Li et al. (2020) utilize a BERT model with triplet input (sequence and object labels, region 

representations from faster RCNN) and two combined loss functions: masked token loss and contrastive loss. 

Finally, Radford et al. (2021) and Jia et al. (2021) follow a similar approach considering simple text and image 

encoders, yet of huge capacity, and the same contrastive learning framework. The former is trained on 400M 

image text pairs, while the latter on 1.8B noisy image text pairs from the web. All the aforementioned models 

are pre-trained on large-scale datasets composed of millions or billions of pairs and are then fine-tuned and 

evaluated on downstream understanding and generation tasks, one of which is image-text retrieval. Regarding 

the second class of models, in initial attempts (Kiros et al., 2015) an encoder-decoder RNN network is trained to 

predict the surrounding sentences in a text document. In such a way, they create generic and useful 

representations for text sentences. Then they use these representations for cross-modal retrieval among other 

tasks, with non-state of the art results but very close to at the time of publication. More recently, a cross 

attention mechanism is proposed for cross modal retrieval (Lee et al., 2018). Also, Wei et al. (2020) and Zhang 

et al. (2020) introduce attention mechanisms that consider self- and cross dependencies between the two 

modalities with comparable to state-of-the-art results. The former utilizes multi-head attention mechanisms on 

top of BERT word features and image features extracted by object detection models. He et al. (2020) consider a 

LSTM text encoder and a LSTM image encoder with attention on the feature map of image patches (created by 

VGG-19), with the number of time steps for image encoding being a hyperparameter. Finally, a graph-based 

approach is presented (Diao et al., 2021) where self-attention with average vector query is employed for final 

feature vector computation on both modalities. Global (between the final feature vectors) and local (between 

each word feature and the corresponding context vector from region features) similarity vectors between image 

and text are extracted and the two modules, (1) similarity graph reasoning and (2) similarity attention filtration 

compute the final similarity vectors which pass through fully connected layers to compute similarity score 

between image and text. 
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3.2 Neural-based Architectures for Cross-modal Retrieval 

Due to its rapid development, Deep Neural Networks (DNN) have increasingly been deployed in the cross-modal 

retrieval context, and then in particular to exploit nonlinear correlations when learning a common subspace 

(Andrew et al., 2013; Feng et al., 2014; Ngiam et al., 2011; Peng et al., 2016). In T3.2, we developed a deep 

learning model that is able to give a similarity score between a textual query and an image. This model is the 

core of the interlinking services developed in T3.2.  

In the next subsections, we describe the models we decided to exploit along with training procedure and the 

data we use to develop them, and the results obtained over metrics chosen from the literature. We start with 

the Siamese Bi-directional LSTM an architecture, which relies on the content annotation tools developed in T3.1. 

This solution has some limits, which motivated us to search for another alternative, CLIP (Contrastive Language-

Image Pre-Training), a neural network trained on a variety of (image, text) pairs resulting in a promiscuous 

embedding vector space where similar images and texts are near in terms of Euclidean Distance. 

3.2.1 Siamese BiLSTM 

The Siamese BiLSTM is the same as presented in D3.1 - Next Generation Content Model and Algorithms for New 

Media Types26, Section 4.2. We replaced this architecture with one based on CLIP due to the limits listed below. 

Limits 

We foresee four major limitations of this approach:  

1. Scalability: The similarity between two elements is computed by the FNN block, which will then have to 

run every time a similarity score is required. Therefore, for N elements in the database and M queries, 

the FNN will have to run O(M x N) times. Therefore, the feature extraction process is dependent on the 

couple of assets compared. It can become a problem as soon as we have millions/billions of objects in 

the database and hundreds/thousands of queries to run at the same time. 

2. Visual blindness: The system is partially blind when dealing with visual content since it considers only 

tags of the objects contained in the image. Therefore, the model is not able to distinguish between two 

different images containing the same objects (order, context). 

3. Sequence focused: BiLSTM focuses on sequences. The annotations for images are not ordered and any 

order introduces artificial information in the process, which can weaken the model retrieval capabilities.  

4. Annotation dependency: Errors in the annotation are propagated in the ranking process, compromising 

retrieval performances. 

3.2.2 CLIP 

State-of-the-art (SOTA) computer vision systems are trained to predict a fixed set of predetermined object 

categories. This restricted form of supervision limits their generality and usability since additional labelled data 

is needed to specify any other visual concept. Learning directly from raw text about images is a promising 

alternative, which leverages a much broader source of supervision. The simple pre-training task of predicting 

which caption goes with which image is an efficient and scalable way to learn SOTA image representations from 

scratch (Radford et al., 2021). 

                                                           
26 https://mediaverse-project.eu/wp-content/uploads/2021/10/MediaVerse_D3.1_NextGeneration-ContentModel-and-
Algorithms-for-NewMediaTypes.pdf  

https://mediaverse-project.eu/wp-content/uploads/2021/10/MediaVerse_D3.1_NextGeneration-ContentModel-and-Algorithms-for-NewMediaTypes.pdf
https://mediaverse-project.eu/wp-content/uploads/2021/10/MediaVerse_D3.1_NextGeneration-ContentModel-and-Algorithms-for-NewMediaTypes.pdf
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The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without 

the need for any dataset specific training. Zero-shot CLIP matches or outperforms all prior zero-shot results on 

Flickr30k and MSCOCO datasets. Zero-shot CLIP is also competitive with the current overall SOTA for the task of 

text retrieval on Flickr30k. CLIP was designed to mitigate a few major problems in the standard deep learning 

approach to computer vision: 

Costly datasets: Deep learning needs numerus data, and vision models have traditionally been trained on 

manually labelled datasets that are expensive to construct and only provide supervision for a limited number of 

predetermined visual concepts. The ImageNet dataset, one of the largest efforts in this space, required over 

25,000 workers to annotate 14 million images for 22,000 object categories. In contrast, CLIP learns from text–

image pairs that are already publicly available on the Web. Reducing the need for expensive large, labelled 

datasets has been extensively studied by prior work, notably self-supervised learning (Doersch et al., 2015; Grill 

et al., 2020), contrastive methods (Oord et al., 2018; Chen et al., 2020), self-training approaches, and generative 

modelling (Donahue & Simonyan, 2019; Kingma et al., 2014).  

Narrow: An ImageNet model is good at predicting the 1000 ImageNet categories, but that is all it can do “out of 

the box.” If we wish to perform any other task, a practitioner needs to build a new dataset, add an output head, 

and fine-tune the model. In contrast, CLIP can be adapted to perform a wide variety of visual classification tasks 

without needing additional training examples. To apply CLIP to a new task, all we need to do is “tell” CLIP’s text-

encoder the names of the task’s visual concepts, and it will output a linear classifier of CLIP’s visual 

representations. The accuracy of this classifier is often competitive with fully supervised models. 

Training Data 

According to (Radford et al., 2021), the algorithm has been originally pre-trained using three existing datasets:  

 MS-COCO (Lin et al., 2014). 

 Visual Genome (Krishna et al., 2017). 

 YFCC100M (Thomee et al., 2016). 

While MS-COCO and Visual Genome (Radford et al., 2021) are high quality crowd-labelled datasets, they are 

small by modern standards with approximately 100,000 training photos each. By comparison, other computer 

vision systems are trained on up to 3.5 billion Instagram photos. YFCC100M, at 100 million photos, is a possible 

alternative, but the metadata for each image is sparse and of varying quality. After filtering to keep only images 

with natural language titles and/or descriptions in English, the dataset shrunk by a factor of 6 to only 15 million 

photos. This is approximately the same size as ImageNet. 

A major motivation for natural language supervision is the large quantities of data of this form available publicly 

on the Ιnternet. Since existing datasets do not adequately reflect this possibility, considering results only on them 

would underestimate the potential of this line of research. To address this, a new dataset has been constructed 

of 400 million (image, text) pairs form a variety of publicly available sources on the Internet. The resulting 

dataset, named WebImageText, has a similar total word count as the WebText dataset used to train GPT-2. 

Architecture 

Figure 19 shows CLIP architecture at high-level. CLIP pre-trains an image encoder and a text encoder to predict 

which images were paired with which texts in our dataset. It is trained using a Contrastive Loss (He et al., 2020) 

that takes as input paired text and image embeddings (their respective representations). It brings to sample 

dependence within each batch since the Contrastive CLIP loss compares each sample in the batch against all 
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other samples within the batch (computing a batch similarity matrix). This entails that unlike most loss functions, 

the samples in each CLIP batch are not independent. In fact, CLIP is trained using a large batch size of 32,768 

samples. 

 

Figure 19: CLIP architecture. 

Text Encoder: The text encoder is a Transformer (Vaswani et al., 2017). As a base size we use a 63M-parameter 

12- layer 512-wide model with 8 attention heads. The transformer operates on a lower-cased byte pair encoding 

(BPE) representation of the text with a 49,152-vocab size. For computational efficiency, the max sequence length 

was capped at 76. 

Vision Encoder: When pre-trained on large amounts of data, Vision Transformer (ViT) (Dosovitskiy et al., 2021) 

attains excellent results compared to state-of-the-art CNNs while requiring substantially fewer computational 

resources to train. The chosen configuration is ViT-B/32 (ViT base variant with 32×32 input patch size). 

Given the “Zero-Shot” nature of CLIP, we decided to load a pretrained version with a hyperparameter 

configuration specified the next sub-section. 

Hyperparameters 

Tables 14 and 15 show the hyperparameters adopted in (Radford et al, 2021). Adam has been used as 

optimization algorithm to minimize the Loss function. In the second table, there are the specifications of the two 

transformers (vision and text) together with the resolution of input images. 

Table 14: CLIP general hyperparameters 

HYPERPARAMETER VALUE 
Batch size 32768 

Vocabulary size 49408 

Training epochs 32 

Maximum temperature 100.0 

Weight decay 0.2 

Warm-up iterations 2000 

Adam β1 0.9 

Adam β2 0.999 (ResNet), 0.98 (ViT) 

Adam ϵ 10-8 (ResNet), 10-6 (ViT) 
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Table 15: CLIP encoders architecture. 

MODEL LEARNING 

RATE 
EMBEDDING 

DIMENSION 
INPUT 

RESOLUTION 
VISION TRANSFORMER 
LAYERS       WIDTH        HEADS 

TEXT TRANSFORMER 
LAYERS       WIDTH         HEADS 

VIT-
B/32 

5 x 10-4 512 224 12 768 12 12 512 8 

 

3.3 System Architecture 

This sub section describes the system architecture used to provide the retrieval service. As mentioned above, 

the retrieval task requires the user to insert a query. This query is firstly processed (encoded) and then compared 

to the other MediaVerse Contents previously stored. The user expects as output a ranked list of contents 

according to some predefined score. The system is composed of three main classes: CLIP encoder, the contents 

Container and the Faiss indexer (for similarity search)27. Each class was instantiated twice, for images and texts. 

Container: By means of the Container, the system keeps track of which user posted which content along with 

the associated MediaVerse IDs. This structure is used because the recommendation system (section 4) must keep 

track of users inside the platform.  

Table 16: Dictionary-like structure of the container. 

Container = {  

             Username : { 

                         Faiss_idx : [content_id, content_id, …], 

                        } 

            } 

The container is structured as in Table 16, with a dictionary-like architecture, in which the main key is the 

username. The value contains another dictionary, whose keys are the Faiss indexes of the content. Each index 

contains a list of all the contents ids associated with that Faiss index. This means that if the same content is 

posted multiple times by the same user, there will be more content ids associated with the same Faiss index. In 

this way, the same content can be posted more than once without raising any error, but it will not be associated 

with a new Faiss index, thus saving space in the Faiss database. Another advantage of this structure is related to 

the fact that the main key is the username. It allows the recommendation system to retrieve the user’s previous 

posts without searching the whole space. The DAM and the underlying mongoDB are used to store information 

about users. 

                                                           
27 The container is a necessary structure because Faiss does not have a way of dynamically excluding vectors based on 
external criteria during the scanning of the space (faiss). 
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Figure 20: System architecture 

The user can access the system (Figure 20) using two actions: 

 Post asset: in this way the user can add an asset/content (text or image) to the system. It will be encoded 

to a 512 embedding vector and stored into the Faiss index. 

 Search query: the user enters a query (text or image) with the aim of retrieving as a result the k elements 

most similar, to the submitted query, among those stored inside the Faiss index. The top K contents are 

ranked according to the cosine similarity with respect to the input query. 

3.3.1 FAISS 

Facebook AI Similarity Search28 (Faiss) is one of the most popular implementations of efficient similarity search. 

It is a library — developed by Facebook AI — that enables efficient similarity search. So, given a set of vectors, 

we can index them using Faiss — then using another vector (the query vector), we search for the most similar 

vectors within the index. Faiss not only allows us to build an index and search — but it also speeds up search 

times to ludicrous performance levels. Faiss allows us to add multiple steps that can optimize our search using 

many different methods. A popular approach is to partition the index into Voronoi cells. Using this method, Faiss 

identifies a query vector xq inside the cell it belongs to, and then use some similarity metrics to search between 

the query vector and all other vectors belonging to that specific cell. In that way, search produces an approximate 

answer, rather than an exact match as produced through exhaustive search. 

Figure 21 shows the gains in search speed of Faiss with respect to different values of significant clusters (or cells) 

explored (nprobe). 

                                                           
28 https://towardsdatascience.com/getting-started-with-faiss-93e19e887a0c  

https://towardsdatascience.com/getting-started-with-faiss-93e19e887a0c
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Figure 21: Faiss general performances. The query time for the index with different nprobe values. 

Our Implementation 

We adopted the faiss.index_factory() function, to instantiate the index. This function interprets a string to 

produce a composite Faiss index. The string is a comma-separated list of components. It is intended to facilitate 

the construction of index structures. We set the default value of nprobe=1 (search only inside the most significant 

cluster at retrieval time). The complete parametrized function is the following: 

Index = faiss.index_factory(512, "Flat", faiss.METRIC_INNER_PRODUCT) 

In particular,  

 input embeddings of size 512 are normalized (lie on the surface of a unit hypersphere) and added into 

the index as they are, without any encoding. It is accomplished with the “Flat” argument (it is equivalent 

to the IndexFlatL2 class).  

 “faiss.METRIC_INNER_PRODUCT” has been chosen as metric to compute similarity between vectors. 

Since embeddings have been normalized, Inner product corresponds to cosine similarity.  

Table 17 shows the run time (ms) needed to retrieve 5000 similar contents with respect to a query, comparing 

different alternatives. 

Table 17: Search methods run time. 

 N. CONTENTS EMBEDDINGS SIZE K RUN TIME (MS) 

vanilla cosine 5000 512 5000 129.31 

filter + cosine 5000 512 5000 105.84 

faiss 5000 512 5000 0.72 

Among the different alternatives evaluated (vanilla cosine and filter plus cosine) Faiss considerably reduces the 

search time. 

For each media type we instantiated one Faiss index. The motivation of this choice is discussed in section 3.4.2 

in Experimental Setup in which the cosine similarity scores, obtained from CLIP vectors, are compared 

distinguishing between unimodal and cross-modal data. Figure 22 above shall express that every time we refer 

to the FAISS database, we refer to the two instances dedicated to text and image. 
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Figure 22: Faiss db split into two Faiss instances. 

3.4 Experimental Setup  

Pre-trained models: The pre-trained CLIP model is available online for inference and fine-tuning purposes. 

However, the publicly available versions do not include the best performing ones as reported in the paper. Thus, 

we opt for the best among the available ones, which is CLIP with ViT-B/32 vision encoder. We have downloaded 

and zero-shot evaluated this CLIP version on MSCOCO 5K test set giving R@1=0.29, R@5=0.54 and R@10=0.65 

for image retrieval and R@1=0.48, R@5=0.73 and R@10=0.81 for text retrieval.  

Other state of the art models like the Oscar pre-trained model, which has been fine-tuned on the downstream 

task of image-text retrieval (MSCOCO captions dataset) are available online for inference purposes. However, 

while the Oscar model outperforms CLIP on MSCOCO captions, the latter one is potentially a better choice as it 

has been trained on 400M image text pairs meaning that it recognizes many more than the MSCOCO concepts 

in visual and textual content and probably better fits MediaVerse’s needs.  

Multi-head cross-modal attention: We have also made attempts for methodological improvements of existing 

models in the same context, using transformer-like self-attention and cross-attention mechanisms on top of 

visual and textual encoders, either pretrained or trained from scratch together with the attention parts. Results 

on the MSCOCO 5K test set (Karpathy split) are presented in Table 18. It seems that with this setting we have not 

surpassed the state of the art but we are still exploring improvement options. However, we also came across a 

study (Wei et al, 2020) that implements a very similar approach, which provides state of the art results. 

Table 18: Recalls of img2txt and txt2img tasks (MSCOCO val 5k) 

 TEXT RETRIEVAL IMAGE RETRIEVAL 
encoder R@1 R@5 R@10 R@1 R@5 R@10 

VGG19 BiGRU (3 layers, 128 
units, 128 embedding dim) 

0.094 0.283 0.406 0.086 0.260 0.379 

CLIP (ViT-B/32) 0.322 0.623 0.747 0.237 0.518 0.656 

 

Dataset: All the following results (3.5) are obtained by testing the whole system on 1000 samples of the 2014 

validation split of MSCOCO. 
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3.4.1 Similarity Comparison and Double Faiss Index 

The objective of this study is to motivate the choice of instantiating two Faiss indexes, one for each modality 

(text and image), instead of a unique one. We start showing that CLIP embeddings are more likely to have higher 

similarity when they come from the same media type (e.g., text-text or image-image) rather than when they are 

from different media (e.g., text-image). This characteristic motivated us to create one Faiss index for each media 

type, so that, given a query, most similar results can be returned for each media type independently. 

The following tables (Table 19, 20, and 21) show the similarity scores (cosine similarity) computed on the CLIP 

generated embeddings taken from the MSCOCO 2014, VIZWIZ (Gurari et al., 2020), FLICKER-8k validation splits 

(Hodosh et al., 2013). Each pair of modality combination (txt-txt, img_img, txt-img) were used to compute mean 

values of similarity scores among similar and dissimilar pair of contents. Blue tables show the cosine similarity 

values for pair of similar contents, red tables the value of the same metric for dissimilar contents.  

There are no similarity values for similar image-image comparison since the mentioned datasets do not track 

similar images. Images were compared with each other only in terms of score among dissimilar images. 

Table 19: MSCOCO - cosine similarity of similar and dissimilar content. 

Table 20: VIZWIZ - cosine similarity of similar and dissimilar contents 

 

 SIMILAR CONTENTS DISSIMILAR CONTENTS 
 

Text-Text Text-Image Text-Text Image-Image Text-Image 

Mean 0.823 0.299 0.590 0.501 0.157 

Min 0.732 0.188 0.130 0.222 0.008 

25° percentile 0.778 0.280 0.524 0.437 0.126 

50° percentile 0.825 0.300 0.590 0.493 0.152 

75° percentile 0.867 0.319 0.654 0.552 0.181 

Max 0.914 0.397 1.0 0.895 0.340 

 SIMILAR CONTENTS DISSIMILAR CONTENTS 
 

Text-Text Text-Image Text-Text Image-Image Text-Image 

Mean 0.772 0.289 0.622 0.588 0.199 

Min 0.655 0.183 0.202 0.164 0.040 

25° percentile 0.711 0.262 0.547 0.521 0.174 

50° percentile 0.774 0.290 0.621 0.592 0.201 

75° percentile 0.836 0.315 0.693 0.659 0.226 

Max 0.895 0.392 1.0 0.956 0.351 
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Table 21: Flicker8k - cosine similarity of similar and dissimilar contents 

The tables above show that the similarity values differ in the case we do a unimodal (text-text) comparison with 

respect to the case of contents of different modality (text-image). By looking only at similar contents (blue), we 

can notice that scores associated to different modality are generally lower than a text compared to other texts. 

Interestingly, by looking at the dissimilar contents (red) inside the red box, we can see that if unimodal contents 

are not similar their scores are still higher than similar text-image. This results in dissimilar contents of the same 

data type with respect to the input query, to be prioritized with respect to contents of different type but 

semantically more similar. It gives rise to necessity of separating the two tasks to avoid unimodal contents to be 

prioritized over cross modal ones. Every observation made is consistent across the three datasets. 

Example 

Table 22 shows an example of the output obtained using one or two indexes is provided using 8 images (and 

their associated caption) randomly sampled from skimage (scikit-image is an image processing Python package 

that works with numpy arrays; the package is imported as skimage). 

Table 22: Skimage images and their associated captions. Image ID and Text ID are the Mediaverse ID associated to the correspondent 
contents in the example provided for both single and double indexes. 

IMAGE IMAGE ID TEXT TEXT ID 

 

Z0WT7PJLGN 
 

A page of text about 
segmentation 

QUERY (queries are not 
present in the 
mediaverse network, so 
they are not associated 
with any id) 

 

1UPF6A04Z5 
 

A portrait of an astronaut 
with the American flag 

9YHU6WMZJE 
 

 

5R5YRSN2R0 
 

A rocket standing on a 
launchpad 

6QVH8CQKWFE 
 

 SIMILAR CONTENTS DISSIMILAR CONTENTS 
 

Text-Text Text-Image Text-Text Image-Image Text-Image 

Mean 0.813 0.304 0.590 0.516 0.171 

Min 0.720 0.217 0.198 0.171 0.002 

25° percentile 0.766 0.285 0.528 0.450 0.144 

50° percentile 0.816 0.304 0.595 0.511 0.170 

75° percentile 0.859 0.325 0.658 0.576 0.197 

Max 0.907 0.386 0.946 0.916 0.347 
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T4H4YW70QQ 
 

A facial photo of a tabby 
cat 

XENG41O9Q2 
 

 

95O1N3NFXJ 
 

A black-and-white 
silhouette of a horse 

7Q1T2OOG10 
 

 

FN2JVSKW7N 
 

A cup of coffee on a saucer 1ZAT41AU04 
 

 

1UPF6A04Z5 
 

A person looking at a 
camera on a tripod 

T6B41T0MSE 
 

 

IUNESE0KVX 
 

A red motorcycle standing 
in a garage 

061JYBF4NV 
 

The caption “A page of text about segmentation” is used as search query, while all other contents (except the 

query) are inserted in the MediaVerse system through the Post content module. Thus, in this example, the Faiss 

index will store 8/8 images and 7/8 texts. Pay attention that only the contents posted in the MV network are 

associated with an ID, as opposed to the first (left out) text used as query instance. We can now distinguish 

between the two alternatives, single Faiss index or two separate Faiss indexes for texts and images. 

Single Faiss Index 

As we will explain later, the application gives as output a status code of the query operation together with a JSON 

dictionary containing two keys:  

 contents: the ordered list of IDs recommended. 

 scores: the cosine similarity scores associated to the IDs. 

Figures 23 and 24 exemplify the shortcomings of instantiating a unique Faiss index for both texts and images. 

 

Figure 23: Single Faiss index output example. 
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We can notice that the first 7 IDs inside the red boxes are all text data - as verifiable by the table above – 

suggesting that if there is only one index for both text and images, the system tends to prioritize the contents of 

the same input modality. Similarity scores of dissimilar text data are higher than similar data of a different 

modality. In fact, the image associated to the input query (green box), with “Z0WT7PJLGN” as ID, is immediately 

after the last textual data, in the 8-th position. Hence, the system can correctly score (approximately 0.36) and 

retrieve the relevant image with respect to all other images, but after prioritizing all other texts.  

Double Faiss Index 

Given the limit emerged in the example above, it could be desirable to instantiate two separate Faiss indexes for 

texts and images. In this way, we aim to separate the tasks of cross-modal retrieval from the unimodal one at 

search time. The output below, in the case of two indexes, is slightly different: now there are two {contents:[], 

scores:[]} json elements wrapped into two keys, “image” and “text”. In this way, the ranked list of contents 

returned is not mixed, but it is separated by data type. 

 

Figure 24: Double Faiss index output example. 

The green box highlights that the relevant image is now prioritized in the correspondent images list. Irrelevant 

texts continue to appear in the texts list, but do not penalize relevant assets of different modality. Hence, we 

avoided to implement a single Faiss index in which insert all assets (texts and images), and we decided to 

instantiate two indexes: 

 Text Faiss index where to add all text contents, and 

 Image Faiss index where to add all image contents. 

Separating indexes makes the retrieval unaffected by noise generated by unimodal contents (with respect to 

input query) with higher scores so, for example, given an input Text, its embedding is used as search key in both 

indexes retrieving the most similar k texts and images of their respective indexes. 

3.5 Result and Discussion 

Here we report our own experiments on performance evaluation of CLIP (ViT-B/32).  

3.5.1 Recall  

Firstly, the model has been evaluated in terms of recall which, in the content retrieval scenario, is equal to the 

fraction of the documents that are relevant to the query that are successfully retrieved: 

 

Table 23 shows the values of recall for the tasks of Image Retrieval (text as input) and Text Retrieval (Image as 

input).  R@k indicates the recall value when k elements are retrieved as recommend by the system. Hence, 

recall is a non-decreasing function of k. “avg. delta” stands for the percentage of recall lost, with respect to 

“vanilla cosine” on the entire collection, because of the approximated search (filter+cosine or Faiss). 
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Three scenarios have been evaluated: 

 Vanilla cosine: the similarity search is made all over the content collection without any filtering. 

 Filter+cosine: a filter is applied to reduce the cardinality of the pool. The cosine similarity is applied 

downstream with a smaller pool. 

 Faiss: the similarity search is performed by means of the Faiss library (based on pool clustering). 

Table 23: Recalls on MSCOCO 2014 val 1k. Comparison between different search techniques. 

 IMAGE RETRIEVAL TEXT RETRIEVAL  
R@1 R@5 R@10 avg. delta R@1 R@5 R@10 avg. delta 

vanilla cosine 0.517 0.793 0.889 +0 % 0.548 0.825 0.910 +0 % 

filter+ cosine 0.495 0.759 0.852 -4.235 % 0.541 0.814 0.897 -1.346 % 

faiss 0.515 0.792 0.888 -0.208 % 0.547 0.824 0.909 -0.138 % 

Values of Recall approach 0.9 in correspondence of 10 elements recommended by the system. In particular, the 

model gets systematically better recall values for Text Retrieval task than Image Retrieval one. Among 

filter+cosine and Faiss, the latter is proven to better preserve the recall while requiring less time to retrieve the 

contents. Substantially Faiss filter the pool in a better way, narrowing the search space only where there is high 

probability to find contents associated to higher similarity scores with respect to input query.  

3.5.2 Mean Reciprocal Rank (MRR) 

Another very insightful metric to evaluate content retrieval systems with, is MRR (Mean Reciprocal Rank). This 

not only considers the number of relevant contents returned by the system in the first K results, but also their 

position in the ranking. The reciprocal rank of a query response is the multiplicative inverse of the rank of the 

first correct answer: 1 for the first place, 1⁄2 for second place, 1⁄3 for third place and so on. The mean reciprocal 

rank is the average of the reciprocal ranks of results for a sample of queries Q: 

 

where ranki refers to the rank position of the first relevant document for the i-th query. 

Recall and MRR metrics have been used to evaluate the retrieval system on three tasks:  

 text2image. 

 image2text. 

 text2text.  

1000 samples are randomly taken from MSCOCO 2014 validation split to retrieve the results. Along the x-axis 

there is the number of retrieved contents k, from 1 to 100.  

According to Figures 25 and 26, cross-modal retrieval (red & blue lines) achieves, on average, better performance 

compared with the uni-modal. The uni-modal (Text2Text) retrieval evaluation is obtained by considering 

positives pairs different captions associated to the same image. From our results it can be inferred that this is a 

harder task for CLIP to accomplish since metric values are generally lower than the other two curves. This is 

probably due to the fact that CLIP is optimized to the cross-modal scenario. 
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Figure 25: Recalls on MSCOCO 2014 val 1k with different number of retrieved contents (k). 

 

Figure 26: MRRs on MSCOCO 2014 val 1k with different number of retrieved contents (k). 

3.6 Thresholding Αnalysis  

In this sub-section, we discuss some efforts we did in the directions of improving the quality of results by 

returning a flexible number of results based on the relevance of the latter. In the previous sections, the user was 

required to insert a fixed number K of desired retrieved items. This static approach has the obvious drawback of 

returning irrelevant content when relevant items in the database are less than K, as well as omitting relevant 

content when the relevant items are more than K. It seems therefore reasonable to choose the number of items 

to be returned by the system based on their relevance to the query rather than by simply selecting the top K. 

In this sense, different similarity thresholds have been tested to evaluate how many non-informative contents 

are filtered out (among the recommended ones) without losing retrieval Recall or MRR. Defined t the similarity 

threshold, and score the cosine similarity between input and content j: 

 all assets associated to a score < t, are supposed to be less likely correlated with user input query. 

 Conversely, if score >= t, we can confidently consider that asset linked to the input one.  

It is a way to dynamically choose the number of assets retrieved by filtering out those less likely to be effectively 

similar to the input query. Hence, the input parameter K becomes a MAX meaning that it is the maximum number 

of retrieved items if all k output contents are considered similar to the input. 

What is missing to apply this line of reasoning is the threshold value, t. As we have seen above, the cosine 

similarity varies if we consider unimodal or cross modal contents. With some extent it also varies if we compare 

img-img and txt-txt. Furthermore, the retrieval task seems to have slightly different performances among txt2img 

and img2txt, suggesting that different threshold should be defined task by task (txt2txt, img2img, txt2img, 

img2txt).  

The following graphs show Recall and MRR values for different tasks. The objective is to understand a proper 

value of t such that we filter out as more contents as possible while retaining Recall and MRR retrieval 

performances. 
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On the y-axis there is the metric (Recall or MRR), along the x-axis “mean filter out” stands for the average number 

of contents filtered out when the threshold is t (higher value of t correspond to more filtered contents). The 

curve color encodes the number of k retrieved contents inserted by the user, showed values are 5, 10, 20, 50, 

100, 150. The text label under each point encodes the value of t tested. Hence the graph has 4 measures:  

 Recall: as defined in 3.5; 

 K: MAX number of contents retrieved; 

 t: similarity threshold; 

 Mean filter out: mean number of filtered out contents out of k with threshold t.  

It is called “mean filter out” since for each value of k, 1000 queries have have been performed each one resulting 

in a certain value of recall and number of filtered out items. Hence, both of them have been averaged over all 

1000 query instances. 

Threshold t, for the tasks of Text2Image and Image2Text retreieval, takes values: 0.20, 0.22, 0.23, 0.24, 0.245, 

0.25, 0.26, 0.27, 0.28, 0.29, 0.30, 0.32. These numbers have been choosen referring to the similarity study of 

pairs text-image. 

3.6.1 Text2Image 

As regards, Text2Image the drop in recall (Figure 27) usually occurs for a threshold between 0.24 and 0.25 with 

up to abot 80% (on average) of k=150 contents filtered out. The same threshold is applicable preserving mrr 

which is more easily preserved until t = 0.26 (Figure 28). 

 

Figure 27: Text2Image recall thresholds. 

 

Figure 28: Text2Image mrr thresholdsImage2Text 
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For Image2Text the drop in recall (Figure 29) usually occurs for a threshold between 0.245 and 0.25 with up to 

abot 80% (on average) of k=150 contents filtered out. In this case mrr (Figure 30) drop occurs faster, with a t 

between 0.23 and 0.24. For this task a good threshold value could be 0.23, with still a good percentage of 

contents filtered out (75% for k=150). 

 

Figure 29: Image2Text recall thresholds. 

 

Figure 30: Image2Text mrr thresholds. 

3.6.2 Text2Text 

Different thresholds have been tested for the task of text2text retrieval given the similarity study in section 3.3. 

Here the tested values: 0.5, 0.6, 0.7, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.80, 0.81, 0.82, 0.84, 0.86. For Text2Text 

the drop in recall (Figure 31) occurs very quickly in correspondence of a threshold about 0.6 with up to 25% (on 

average) of k=150 contents filtered out. In this case mrr (Figure 32) drop occurs in at the same value of t. For this 

task a good threshold value could be 0.23, with still a good percentage of contents filtered out (75% for k=150). 
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Figure 31: Text2Text recall thresholds 

 

Figure 32: Text2Text MRR thresholds. 

3.6.3 Image2Image 

It was not possible to track similarities among images since the employed datasets do not aggregate images of 

the same semantics and context. 

3.6.4 Conclusions 

Since CLIP is a large-scale model, it is worth replicating these tests on different datasets as FLICKER8k and VIZWIZ 

to verify the robustness of threshold choice for each task. 

3.7 Design and Deployment 

The user can access the system by means of two functions (Figure 33): 

 add_content(): in this way the user can add content (text or image) to the system. It will be encoded as 

a 512 embedding vector and stored into the Faiss index. 

o Input: 

 username: unique identifier of the user who posts the content; 

 text or image binary data (refer to usage.py example); 

 id: MediaVerse ID of the content to load; 

 type: "text" or "image", string describing the data type of the content to be loaded. 

o Output: 

 a success message in the field “msg” 

 the elapsed time for the operation in the field “time” 
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 retrieve(): the user enters a query (text or image) with the aim of retrieving the K most similar elements 

among those stored inside the Faiss index. These top K contents are ranked according to the cosine 

similarity with respect to the input query. 

o Input: 

 username: unique identifier of the user who search for a content; 

 text or image binary data (refer to usage.py example); 

 k: number of similar content to retrieve; 

 type: "text" or "image", string describing the data type of the input query. 

o Output: 

 retrieved texts in the field “text”: 

 “contents” is an ordered list containing the ids (string) of the retrieved texts. The 

list is ordered based on decreasing values of similarity scores (i.e., the first 

content is the best one retrieved (among all texts) for that query). 

 “scores” is an ordered list of similarity scores for the retrieved texts (i.e., the first 

score represents the similarity between the query and the first content in the 

“contents” field). 

 retrieved images in the field “image”: 

 “contents” is an ordered list containing the ids (string) of the retrieved images. 

The list is ordered based on decreasing values of similarity scores (i.e., the first 

content is the best one retrieved (among all images) for that query). 

 “scores” is an ordered list of similarity scores for the retrieved images (i.e., the 

first score represents the similarity between the query and the first content in 

the “contents” field). 

 

Figure 33: Rest API - Retrieval. 

Duplicate content: The application is designed to check for duplicated contents even if they are associated to 

different MediaVerse ID. So, if the user tries to add an image/text already present in the collection but with a 

different ID, the application will append the new ID to the tail of the list of IDs associated to a specific Faiss index 

of the user. Hence, referring to the Container in section 3.3, the application is designed to not store multiple 

times the same content inside the Faiss index (for the sake of memory footprint), but it keeps track of different 

IDs associated to that same content. When the system is asked to retrieve the most similar contents with respect 

to an input query, the IDs associated to the retrieved contents are the most recent (last element of the IDs list). 
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3.7.1 Project Folder 

The CMRR (cross-modal retrieval and recommendation) project is available on GitHub and contains (Figure 34): 

 app.py: Flask Rest Api exposing three services: add_content(), retrieve(), recommend(). Remember that 

all three services reside in the same rest api instance, hence in the same docker container. 

 docker: folder containing:  

o Dockerfile: file to create the docker image. It creates a conda virtual environment where 

dependencies are installed together with OpenAI CLIP github to load the model instance and run 

the encoding of images and texts. 

o docker-compose.yml: which build the docker image and run a container all at once by means of 

the “docker-compose up” command. 

o .env: file containing the PORT variable at which the service is exposed. This value can be edited 

to choose switch service port. Its default value is 6000. 

 usage: folder containing two examples of retrieval and recommendation services usage.  

 requirements.txt: list of application dependencies which is read by the Dockerfile. 

 .png: images showed in the README.md 

 README.md: description of exposed services: expected input and output. 

 scripts: folder containing shell scripts to run the rest api. 

 log: folder with a log file listing activity of the last session.  

 

Figure 34: Project folder. 

3.7.2 How to Use 

 Download and install Docker Desktop available at: https://www.docker.com/products/docker-desktop/. 

 Run “docker-compose up –build” to start the REST application. 

  

https://github.com/D2KLab/CMRRS/tree/recommendation
https://www.docker.com/products/docker-desktop/
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4 Multimodal Recommendation Technology 

In general, recommender systems can be classified in different categories based on the approach and on the 

different sources of information for providing users with recommendations of items. The most widespread 

categories of recommender systems are asset-based, collaborative filtering, knowledge-based, and hybrid 

(Adomavicius & Tuzhilin, 2005): 

 Content-based: the user will be recommended items like the ones preferred by them in the past. 

 Collaborative filtering: the user will be recommended items that people with similar tastes and 

preferences liked interacted with. 

 Knowledge-based: these embed domain-specific knowledge that is used for matching user requirements 

(often expressed in a query) with items of potential interest. 

 Hybrid approaches: these combine the previous methods. 

All these approaches try to balance factors like accuracy, novelty, diversity, and stability in the recommendations. 

Each of the previously mentioned recommendation approach has its advantages and disadvantages (Table 24). 

Table 24: Different approaches to Recommendation systems. 

APPROACH PROS CONS 

CONTENT-BASED No need to cross user behaviours and profiles Lack of cross 
user interactions 

COLLABORATIVE FILTERING Scalability, only based on ratings Data sparsity 
and cold start 
problems 

KNOWLEDGE-BASED No user activity history required Access to a 
structured 
knowledge 
underpinning 
the items 

HYBRID Inherits the advantages of the combined methods Limited 
performance 

Content-based recommender systems are classifier systems derived from machine learning research. These 

systems use supervised machine learning to induce a classifier that can discriminate between items likely to be 

of interest to the user and those likely to be uninteresting. The content-based approach takes as data source the 

user’s previous interactions; therefore, it does not raise privacy issues, however as it is a supervised approach, it 

requires data descriptions. The collaborative filtering approach analyses the interactions of similar users for 

identifying candidate items. As a collaborative filtering system collects more ratings from more users, the 

probability increases that someone in the system will be a good match for any given new user. However, a 

collaborative filtering system must be initialized with a large amount of data, because a system with a small base 

of ratings is unlikely to be very useful. It suffers from the “cold start” problem: until there is a large number of 

users whose habits are known, the system cannot be useful for most users (Burke, 2000). Knowledge-based 

recommender systems avoid these drawbacks: for example, it does not have a cold start problem because it 

does not depend on a base of user ratings. 

Due to the inability to track users “previous interactions with other users” content, we have decided to adopt a 

content-based approach that leverages user previous assets posted in the MV network. In this way, the user's 
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preferences do not emerge from the contents seen but from those generated by himself. This approach differs 

from the usual content based (as defined above) but is better suited to the MediaVerse context. Among the 

identified approaches in Table 24, we judged the content-based one as the most compatible with our case.  

4.1 Related Work 

Content-based recommender systems analyse a set of documents and descriptions (or only documents or 

descriptions) of items previously rated by a user, and build a model, also called profile, of user interests based 

on the features of the objects rated by that user (Mladenic, 1999). The profile is a structured representation of 

user interests adopted to recommend interesting new items. The recommendation process boils down to 

matching the profile built from the data and the attributes of a content object. The result of the process is the 

level of relevance that a new content has for the considered user. The way it creates the profile is important for 

the effectiveness of an information access process that assists users in finding content. 

According to Lops et al. (2019), while pure collaborative filtering methods dominate the research landscape 

(Jannach et al., 2012), considering information about the content  is highly important in many of today’s practical 

applications of recommenders, and will be increasingly relevant in the future for mainly two reasons. First, 

certain aspects of a recommendation system could only be implemented in an effective way when one considers 

knowledge about the features of the items. These aspects, for example, include the diversification of the 

resulting recommendation lists, the generation of explanations, or the creation of understandable user models. 

Second, we continue to see new knowledge sources that provide information about the items, and which could 

be used in the recommendation process. These sources include both structured ones like DBpedia (Bizer, et al., 

2009), semi-structured ones like Wikipedia, and unstructured ones. This latter class includes all sorts of user-

generated content like reviews and tags, ultimately leading to a much richer item representations than those 

that were available in the past. 

The use of vector space models in recommender systems has introduced a clean and solid formalism to represent 

content in a vector space where to perform calculations on them such as grouping similar objects or utilizing 

distance functions. The simplicity of such systems does not hurt the effectiveness of the model (Musto, 2010).  

A seminal approach to exploit the vector space in recommender systems based on user interactions has been 

proposed by Agarwal et al. (2005) making use of a subspace clustering algorithm. The application of clustering 

approaches in recommender systems has been investigated also for reducing the sparsity of the information that 

is often managed when the recommendation is triggered (online). Appropriate tool to support recommender 

systems in increasing time efficiency are clustering algorithms, which find similarities in off-line mode 

(Kużelewska & Wichowski, 2015). 

Recently, there is a rising attention in utilizing CLIP (Radford et al., 2021), a vector space model, for both mapping 

objects and retrieving objects in a recommender system implementation. Another work (Chia et al., 2022a) 

builds on top of the recent wave of contrastive-based methods for representational learning. CLIP-like models 

are still very new in this domain, another example is GradREC that leverages the space learned by FashionCLIP, 

a fashion-fine tuning of the original CLIP (Chia et al., 2022b). 

In the context of MediaVerse, without the mechanism to keep track of the user feedback, the user profile is built 

using the history of the content that the user has generated. Content can be of different types such as text, 

image, and video, being MediaVerse a multimodal context. The use of a vector space model that operates in a 
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multimodal context adds a further challenge that translates into creating a recommender system operating on 

all modalities altogether. This is a challenge that the algorithm described below addresses. 

4.2 CLIP-based recommendation algorithm 

The implementation of the recommender system developed for this project exploits the CLIP-based retrieval 

system of Section 3. While in the retrieval system the seed for the retrieval is a query (image/text) given by the 

user, in the recommendation system there is no user input. Furthermore, there is not a history of user 

interactions and there is not a user’s feedback for the recommendations to adjust them. Therefore, to create 

the seeds for the retrieval, the algorithm makes use of the previous posts that the same user has made.  

4.2.1 System Architecture 

This section describes the system architecture of the recommendation service. The recommendation task does 

not require any input from the user, but a request for recommendation must be sent to activate the 

recommendation system. This is composed of two main classes: the container and the Faiss indexer. Each class 

was instantiated twice, for images and texts. The container structure is the same as in Figure 20, described in 

section 3.3. The role of the container is to simulate the presence of a database in the REST API implementation. 

Meanwhile the Faiss indexer is the same component previously described in 3.3.1. In Figure 35, the system 

architecture is illustrated. Like the retrieval system, the user can access the system using two actions: 

 Post content: in this way the user can add a content (text or image) to the system. It will be encoded to 

a 512 embedding vector and stored into the Faiss database. When adding an embedding to the Faiss 

database, the relative Faiss index associated with that content is returned and stored in the container, 

along with the relative content id and the username of the user who posted. 

 Recommendation request: when the user asks for recommended contents, the system performs the 

following steps:  

o Retrieves the previously posted contents, given the username of who requested the service. 

o Based on the user’s previous contents, the recommendation system builds a series of seeds, with 

an algorithm described in Section 4.2. 2.. 

o The recommendation seeds are used as inputs to the retrieval system, that searches the top k 

most similar contents among the MediaVerse content (excluding those posts that belong to the 

user itself). 
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Figure 35: System architecture. 

4.2.2 Algorithm 

This Section describes the algorithm that allows the system to retrieve the user’s previous posts and generate 

seeds for the retrieval system. As mentioned earlier, when a user asks for recommended content, the system 

retrieves the Faiss indexes of the user’s previous posts from the container, by accessing the value of the 

dictionary associated to the username key. From the retrieved Faiss indexes, through the function 

index.reconstruct(idx), the embeddings of the posts are reconstructed. 

Since the number of previously posted images or texts is not known a priori, one challenge of this task was 

building a way of having a reduced number of seeds to use as input to the retrieval system. One possible solution 

is a clustering of the embeddings, to “group” all the user’s previous posts into a number of interest areas and 

select the most relevant ones.  

The clustering technique chosen for this task was HDBSCAN. HDBSCAN stands for Hierarchical Density-Based 

Spatial Clustering of Applications with Noise. This technique uses density of neighbouring points to construct 

clusters, allowing clusters of any shape to be identified. After the clustering of the user’s previous posts, three 

cases are distinguished: 

1. Number of clusters = 0:  

a. Retrieval of k similar contents for each embedding of the user’s previous posts, so each content 

is a seed to the retrieval system. 

b. Selection of k random elements, with a probability distribution function built on the similarity 

scores, with a softmax activation function. 

2. Number of clusters = 1: 

a. Selection of the cluster medoid and use of it as seed to the retrieval system. Return of 80% k. 

b. Selection of a random outlier and use of it as seed to the retrieval system. Return of 20% k. 
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3. Number of clusters >= 2: 

a. Selection of the medoids of the two main clusters and use them as seeds to the retrieval system. 

Return of 40% k each. 

b. Selection of a random outlier and use it as seed to the retrieval system. Return of 20% k. 

The values of fraction of k returned from the outlier seed is chosen arbitrarily, according to a trade-off discussed 

in Section 4.4.2. In the cases 2) and 3) the point chosen to represent the cluster is the medoid. The medoid is a 

point that is part of the cluster and that has minimum distance from all other points. The mean or the centroid 

are points that in the HDBSCAN clustering technique could result in being far from the actual cluster, because 

for HDBSCAN the clusters might not be round, since it is a density based and not special based technique. The 

resulting clusters might have a convex shape. Therefore, the centroid of the cluster might be in the area of 

another cluster, thus misleading the recommendation and creating a non-representative seed. 

4.3 Experimental Setup 

Here, we describe the setup of the experiments that were ran to analyse the recommender system. We average 

the results of 100 iterations, performed with a total of 5000 samples of the validation 2014 split of the MSCOCO 

dataset, which correspond to 1114 image/caption couples. The samples are divided among two users: 

 The first representing the user who makes the recommendation request, called the posting user. 

 The second representing the rest of MediaVerse content items, i.e., the possible content that can be 

recommended. 

Two types of analysis were made to evaluate the performance of the recommendation system: the qualitative 

analysis and the quantitative analysis. In the qualitative analysis we will show the input, the output and how the 

seeds for the recommendation are generated, allowing the reader to evaluate with visual inspection the 

recommended content with respect to the seeds. In both types of analysis two cases are distinguished: 

 Case number of clusters = 0, evaluates the performance of the random selection. 

 Case number of clusters ≥ 1, evaluates the performance of HDBSCAN clustering for generating the seeds. 

In the quantitative analysis the main parameter that will be used for the evaluation will be the one of the diversity 

indexes. The diversity is calculated with the Intra-List Distance (ILD), defined as the average pairwise distance 

among items (Antikacioglu et al., 2018). 

The distance dist(𝑣𝑘, 𝑣𝑗) between items is measured using the Euclidean distance between the items’ 

embeddings. Given a list L of recommendations, defined by item lists of length 𝑐𝑢 for user u, the intra-list distance 

is defined as follows: 

 

A useful parameter introduced in this section to evaluate the diversity is the parameter d, which is the fraction 

of k recommended from the seed extracted from the outliers. This parameter can only be used in the second 

case (number of clusters ≥ 1). 

Usually, to evaluate a recommendation system, useful parameters to consider, other than the diversity, are 

serendipity and novelty. The novelty is a measure of how many new contents are present among the 

recommended ones, while the serendipity is the measure of how much a new content is appreciated by the user. 
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However, evaluating these parameters would require the presence of a user experience for feedbacks and for 

recording of the contents that have already been seen. The ILD was chosen as diversity metric because it allows 

us to evaluate the diversity between the recommended items, without involving the user’s experience. 

4.4 Results and Discussion 

Here, we present the qualitative and quantitative analysis and discuss the results. Furthermore, we draw 

conclusions from the results, highlighting the limitations of the system and proposing future improvements. 

4.4.1 Qualitative Analysis 

Here, we provide examples of the functioning of the recommendation system. For this purpose, we use the 

MSCOCO validation 2014 split, with 5000 samples. From 5000 we select 1114 image/caption couples, and we 

cluster the images with HDBSCAN, obtaining 7 clusters. Figure 36 presents the clustering of the images with a 2D 

projection, obtained with TSNE python library. We assume that the caption associated to an image belongs to 

the same cluster as the image itself.  

 

Figure 36: 2D representation of 1114 samples of the MSCOCO validation 2014 split clustered with HDBSCAN. 

We divide the 1114 samples between two users: one representing the posting user and the other representing 

the whole MediaVerse contents, as described in Section 4.3. For the first case, where we want to simulate the 

event in which HDBSCAN is not able to find any cluster, we randomly extract few samples, while to simulate the 

second case, we extract a larger number of samples that are known to belong to one of the previously formed 

clusters, as we will describe in the next examples. 

Number of clusters = 0 

The case in which HDBSCAN is not able to find any cluster, it might happen when the user’s posts are too few to 

allow the creation of clusters. Therefore, for this setup, we uploaded as user’s previous posts 16 samples for 

each type, images, and texts, of the same couple image-caption and we output the top k recommended content, 

with k = 10. Figure 37 shows the texts that represent the user’s previous posts, while in Figure 38 shows a 

representative example of the three main topics from which these images were extracted: airplanes, 

motorcycles, and streets.  
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Figure 37: Captions posted by the user. 

In this case, HDBSCAN is not able to find any cluster because of the limited number of input contents, therefore 

each image and each text is used as seed to the retrieval system. Figure 39 presents the output of the random 

selection, according to a distribution based on the similarities. The IDs of text2image output corresponds to the 

images, in Figure 40. The recommended contents respect the three main themes of the input images. The same 

holds for the image2image output (Figure 41). The image2image recommended asset contains the three main 

subjects of the user’s previous post: motorcycles, planes, and a street image. 

 

Figure 38: Example of four images posted by the user. 
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Figure 39: Output of the recommendation system in the "zero clusters" case. 

 

Figure 40: text2image recommendation. 
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Figure 41: image2image recommendations. 

Number of clusters > 0 

The case in which the posted content of the requesting user is grouped by HDBSCAN into more than one cluster 

represents the case in which the user has enough previous posts to allow HDBSCAN to create clusters. In this 

case we return 80% of k from the main clusters and the remaining 20% from a random outlier, allowing the 

output to vary from the user’s main interests. 

We analyse an example in which the user posted a total of 240 images/captions couples, of which 129 are taken 

from a cluster representing bathrooms, 10 from the cluster representing wild animals, 30 representing planes 

and 71 are taken from random outliers. These samples are then clustered by the recommendation system (Figure 

42). The 2D representation of the clustering was performed with TSCAN library. For the texts, 3 clusters were 

found, while 4 clusters are found for the images. Therefore, even though the clustering was performed with the 

same parameters, the type of the content influences the number of clusters found. 

In this case, the seeds given as input to the retrieval system are selected from the medoids the two main clusters 

(one if there is a single cluster) and one from a random outlier. 
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Figure 42: Clustering of the user’s previous posts. 

Figure 43 shows the selected seeds. As expected, the seeds from the two main clusters represent bathrooms 

and planes for both images and texts. Meanwhile the randomly selected outlier seeds represent a living room 

and a street, in texts and images respectively. 

 

 

 

Figure 43: Seeds extracted from the clustering. 

Figure 44 shows the output of the recommender system in this case. For the text2text recommendations, as 
well as for the text2image, the three main subjects of the output are planes, bathrooms and living room.  
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Figure 44: output of the recommender system with clustering. 

The same holds for the image2text and image2image recommendations, where the three main subjects present 

in the recommended items respect the subjects of the image seeds. Figure 46 shows the output of the 

image2image recommendation: planes, bathrooms, and streets. 

 

Figure 45: text2image recommendations. 
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Figure 46: image2image recommendations. 

4.4.2 Quantitative Analysis 

Here, we report the variation of the ILD (Intra List Distance, described in Section 4.3) according to two 

parameters: the number k of recommended contents, and the fraction d of content that comes from the outlier 

seed. Moreover, we will analyse how the recommendation system execution time scales with the number n of 

posted contents by the posting user. Summarizing, we have three parameters: 

 k: the number of recommended contents 

 d: the fraction of contents that are generated from the outlier cluster 

 n: the total number of contents posted    

ILD vs k 

To analyse the diversity with respect to k we chose several posted content n first equal to 20, to simulate the 

case in which previously posted contents form no cluster due to its scarcity, and then n = 200 to simulate the 

actual clustering scenario (Figure 47). 

In the first case, as expected, the diversity proportionally increases with the increase of k. In the case in which 

the system is not able to generate any cluster from the previous posts of the user, each of the previous post is a 

seed. For example, if k = 10, it means that the output includes recommended contents from at most 10 seeds, 

but if k = 100 it means that the output can include at most items recommended from 100 different seeds. 

Therefore, as k increases, the number of different seeds employed is likely to increase as well. This results in 

higher diversity among the recommended contents. 

In the second case, the number of recommended contents k influences the diversity only for values below k = 

20. This happens because if we have less recommended content from three different areas of knowledge (two 
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seeds for the two main clusters and one from outliers) the pairwise distance between the recommended 

contents will be higher. If we have more recommendations from the same area of knowledge the average 

pairwise, distance between the recommended items will be smaller.  

 

Figure 47: Variation of ILD according to k in the case with no clusters and the case with more than one cluster. 

ILD vs d 

We chose the number of posted contents n equal to 200 to simulate the clustering scenario, and k = 100. The 

range of d varies from 5% to 95% (Figure 48). In this case, the ILD increases with the percentage of content 

returned from the outliers. It is worth mentioning that both in this and in the previous case the output of a cross-

modal recommendation has a higher ILD with respect to the output of a uni-modal recommendation. This means 

that, for example, the recommended images retrieved from the previously posted texts have higher diversity 

than the recommended images retrieved from previously posted images. Therefore, the cross-modal 

recommendation naturally introduces diversity in the output. The value of d can be selected with a trade-off 

between diversity and relevance of the chosen outlier with respect to user’s main interests. Therefore, as stated 

in Section 4.2.2, the chosen fraction of k returned from the outlier is 0.2. 

 

Figure 48: Variation of ILD according to d. 
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4.4.3 Conclusions 

From the previous analysis, it becomes evident that the parameters of the system have a limited influence on 

the range of values of the diversity that remains between 0.80 and 0.99. The reason is in the way the system was 

built independently from the number of posted contents and the number of recommended contents, the system 

selects only three main seeds to represent three areas of interest, which is the main limitation of the system. 

Limitations 

The main limitation arises from the fact that, regardless of the number of previously posted contents, the system 

selects only three seeds. The two seeds from the two main clusters may not provide a complete representation 

of all the interests of the user. It is also important to mention that the algorithm suffers with the so-called “cold 

start” problem: if the user has not yet posted, but it requires recommended content, the system will not be able 

to generate seeds and therefore recommend content. 

Future work 

Future improvements of the recommendation system can include an interaction of new users with the 

MediaVerse platform, in which the platform itself suggests some images to the users and asks them to select 

images of their interest, to help the system get over the “cold start” phase. 

Another improvement of the system can include increasing the number of seeds with the number of generated 

clusters from the previously posted content, in order to increase the diversity of the recommended items. 

4.5 Design and Deployment 

The recommendation service is exposed by the recommend() function which resides on the same REST API of 

the retrieval system (Figure 49). Hence, the application has only one docker container exposing 3 functions: 

add_content(), retrieve, recommend(). In the recommendation context it is assumed that the user who add 

contents in the MV node is different from the one who receives the recommendation. Different users are 

identified by their username. The user can access the system by means of two functions: 

 add_content(): in this way the user can add content (text or image) to the system. It will be encoded as 

a 512 embedding vector and stored into the Faiss index (same as retrieval system in 3.7). 

o Input: 

 username: unique identifier of the user who post the content. 

 text or image binary data (refer to usage.py example). 

 id: Mediaverse ID of the content to load. 

 type: "text" or "image", string describing the data type of the content to be loaded. 

o Output: 

 a success message in the field “msg” 

 the elapsed time for the operation in the field “time” 

 recommend(): the user does not enter any query. Starting from a seed, the System suggests to the user 

new contents based on user post history and a certain degree of novelty. The top K contents are ranked 

according to the cosine similarity with respect to the generated seed. 

o Input: 

 username: unique identifier of the user who search for a content (its contents are 

excluded from the recommendation process). 
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 k: number of similar assets to recommend. 

o Output (divided into 2 sections):  

  “text” (if the user seed is build starting from text contents): 

 (text2text) - recommended texts in the field “text”: 

 “assets” is an ordered list containing the ids (string) of the retrieved 

texts. The list is ordered based on decreasing values of similarity scores 

(i.e., the first asset is the best one retrieved for that query). 

 “scores” is an ordered list of similarity scores for the retrieved texts. 

 (text2image) - recommended images in the field “image”: 

 “assets” is an ordered list containing the ids (string) of the retrieved 

images. The list is ordered based on decreasing values of similarity 

scores (i.e., the first asset is the best one retrieved for that query). 

 “scores” is an ordered list of similarity scores for the retrieved images. 

 “image” (if the user seed is built from images): 

 (image2text) - recommended texts in the field “text”: 

 “assets” is an ordered list containing the ids (string) of the retrieved 

texts. The list is ordered based on decreasing values of similarity scores 

(i.e., the first asset is the best one retrieved for that query). 

 “scores” is an ordered list of similarity scores for the retrieved texts. 

 (image2image) - recommended images in the field “image”: 

 “assets” is an ordered list containing the ids (string) of the retrieved 

images. The list is ordered based on decreasing values of similarity 

scores (i.e., the first asset is the best one retrieved for that query). 

 “scores” is an ordered list of similarity scores for the retrieved images. 

 

Figure 49: Rest API - Recommendation. 

4.5.1 Project Folder 

Refer to 3.7.1. 

4.5.2 How to Use 

Refer to 3.7.2. 
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5 Services for the Automatic Adaptation of MediaVerse Assets 

 

5.1 Introduction 

In recent years, the advances in the computing capacity of modern compact devices have been truly remarkable, 

but at the same time, newly created media experiences require increasingly more powerful devices. Also, the 

introduction of 5G networks opens the possibilities for real-time media experiences. But still 5G is not fully 

extended and accepted by all kinds of devices in the real world. Therefore, modern applications are intended to 

be compatible with 5G networks, but they are not optimized to be transmitted over these networks. 

The above give rise to the intense engineering work that is necessary to adapt the original media files to others 

that are more portable, lightweight, or consumable by any type of user. Therefore, research into new methods 

to compress files, or the search for standardized media types is still highly relevant. 

ATOS explores the most modern asset adaptation methods available by testing on real-world media assets, 

reaching conclusions on the best available optimizations for each type of file. 

5.2 Asset Adaptation Pipeline 

T3.3 takes care of developing resources for the automatic adaptation of asset. Figure 50 represents the first 

approach on the adaptation of asset that was made available in the platform. 

 

Figure 50: Base asset delivery workflow. 

During the development and testing phase, it became clear that this approach is incomplete, since it represents 

all data types passing through the same typical video processing components. Each MediaType file is completely 

different, so a separate workflow is needed to transform each of them. In addition, as the first phase of the user 

interface for the platform was developed, the need to offer different transformations for different user use cases 

became noticeable. For example, a video shown to a user to preview, or appear in a list of assets quickly, should 
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not have the same quality as the view for the owner/editor of the asset. The platform should provide an approach 

for every asset representation on the UI. For this reason, the platform needed to evolve to a different one in 

which all types of media files are optimized. 

To summarize, the following are the media data types that the consortium has agreed to accept on the platform 

during this development phase: 

 Text 

 Pictures 

 Audio 

 Video 

 360 Video 

 3D models 

The status of the transformations available for each type of file will therefore be separated and explained in a 

dedicated section. Moreover, through the first tests of the interface, we have detected the following 

representation needs for each type of asset: 

 The original asset. 

 An optimized version for the owner / purchaser to visualize the asset. 

 A previsualization version for non-owners and viewers from external nodes. 

As MediaVerse is a decentralized platform, the publication of the transformation results led the consortium to a 

discussion about the availability of the assets for users of other nodes, or non-owners of the asset. The original 

assets should not be shown to users unless they own them or have rights to use them. 

The following table (Table 25) represents the approach to the representations and the publication method of 

an asset that should be available for the different use cases. 

Table 25: Required transformations for each Media Type. 

 
Search View Asset view Original 

Media Type ALL OWNER PURCHASER OTHER USER OWNER PURCHASER 

Text Description and 
generic 
Thumbnail 

Simple text 
editor 

Text viewer description Download/
Delete 

Download 

Pictures Compressed 
version with 
watermark 

Original Original Compressed 
version with 
watermark 

Download Download 

Audio Description and 
generic 
Thumbnail 

Original Original Compressed 
version with 
audio 
watermark 

Download Download 

Video Thumbnail Adaptive 
Streaming 
version 

Adaptive 
Streaming 
version 

GIF summary Download Download 

360 Video Thumbnail Adaptive 
Streaming 
version 

Adaptive 
Streaming 
version 

GIF summary Download  Download  

3D Models Thumbnail Original Original GIF summary Download Download 
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The implementation of IPFS and the federated search function enabled platform decentralization. Users should 

be able to list and purchase assets from other nodes. This new functionality introduced the need for a kind of a 

CDN to serve the asset to the users. As IPFS technology can store and serve assets in a decentralized way. ATOS 

proposed to use this functionality to offer some of the single file previews for external node users. If an asset is 

purchased from an external node, it is duplicated in the purchaser node, with MediaVerse nodes acting as a CDN. 

As in previous deliverables, in the following sections, we describe the necessary processes to ensure the correct 

rendering of assets by the end user. The core of all these transformations is the transcoder service, of which the 

implementation will also be described in detail. 

5.3 Transformation Workflow 

The MediaVerse platform is decentralized and based on microservices. Therefore, the communication between 

components of the platform will be done through the APIs exposed by each of them. The components related to 

the transformation workflow are the UI, the transcoder, the publisher, the IPFS node and the DAM. 

5.3.1 Architecture 

The main purpose of this section is to explain the integration of the transcoding service with the rest of the 

platform to the internal components of the service. 

Integration 

The transformations required to display in the interface have been approached from three use case perspectives: 

An asset creator, a buyer, and an external user, either from the node or from an external node, are searching for 

assets. Figure 51 illustrates the ingest and display process for different types of users, isolating only the 

interaction between the DAM and the transcoding service. This process is also described in detail  below. 

 

Figure 51: Transcoder interaction with other MediaVerse services. 

1. The asset creator uploads any media asset using the interface. 

2. Both from the interface and from the DAM the mime type of the asset is filtered, and the DAM makes 

the necessary calls to the transcoding service. 

a. The DAM uses the “Direct transformations” API endpoints to generate the pre-visualization 

transformations for the asset: Thumbnail and GIF 
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b. The interface shows the user that the asset has been uploaded, and direct transformations, GIF 

or Thumbnail. The asset is now ready to be searched, or its metadata edited in the “My assets” 

section. 

c. The DAM calls the “Transcode and Publish endpoints” to start the adaptive transformation of 

the asset. This process may take a while depending on the asset uploaded.  

d. Once the adaptive streaming files are generated, the transcoder informs the DAM and sends the 

result. 

3. The owner is now able to play the video file quickly, regardless of the size, length, or device on which it 

is displayed. 

4. If another user purchases the video, the purchaser will have the same viewing options, but won’t be able 

to modify or delete the asset. 

Internal Architecture 

As shown in Figure 52, the service architecture is based on docker, making integration and deployment tasks 

with the rest of the components easy. The reasons for the choice of each of the components that made up the 

transcoder and the publisher are as follows. 

 

Figure 52: Transcoder service internal Architecture. 

Ubuntu docker Image: “Ubuntu is a Debian-based Linux operating system that runs from the desktop to the 

cloud, to all your internet connected things” . It is the world's most popular operating system across public clouds 

and OpenStack clouds. It is the number one platform for containers, from Docker to Kubernetes to LXD29 .It was 

decided to use Ubuntu as the container for the operating system, and no other more lightweight ones like Alpine 

due to possible compatibility issues/updated repositories of the second one. Using ubuntu made integration with 

the more modern and experimental features of ffmpeg easy, as both solutions are kept up to date and are fully 

compatible. 

Python: Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. Its 

high-level built-in data structures, combined with dynamic typing and dynamic binding, make it very attractive 

for Rapid Application Development, as well as for use as a scripting or glue language to connect existing 

components together. 30 Since ffmpeg is a command line tool, a versatile programming language was needed 

that had many options for integrating an API with operating system functions. 

                                                           
29 Docker Hub. (2022). Retrieved 26 May 2022, from https://hub.docker.com/_/ubuntu  
30 What is Python? Executive Summary. (2022). Retrieved 26 May 2022, from https://www.python.org/doc/essays/blurb/  

https://hub.docker.com/_/ubuntu
https://www.python.org/doc/essays/blurb/
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Ffmpeg: “FFmpeg is the leading multimedia framework, able to decode, encode, transcode, mux, demux, stream, 

filter and play pretty much anything that humans and machines have created”. It supports the most obscure 

ancient formats up to the cutting edge. No matter if they were designed by some standards committee, the 

community, or a corporation31. When looking at the options available for transcoding videos in a backend service, 

there are not many more than ffmpeg. ffmpeg is the basis of almost any modern transcoder, and it offers a large 

number of available configurations. 

FastAPI: is a modern, fast (high-performance), web framework for building APIs with Python 3.6+ based on 

standard Python type hints. The key features are: Very high performance, on par with NodeJS and Go (thanks to 

Starlette and Pydantic) . One of the fastest Python frameworks available. Increase the speed to develop features 

by about 200% to 300%. * Reduce about 40% of human (developer) induced errors. Great editor support. 

Completion everywhere. Less time debugging. Designed to be easy to use and learn. Less time reading docs. 

Minimize code duplication. Multiple features from each parameter declaration. Fewer bugs. Get production-

ready code. With automatic interactive documentation. Based on (and fully compatible with) the open standards 

for APIs: OpenAPI (previously known as Swagger) and JSON Schema.32 Choosing Fast-Api as the framework for 

the transcoder API was a success. Fast-Api is the most modern technology for building APIs available in Python, 

resulting in clear documentation for the rest of the consortium and amazing processing speed and scalability. 

Nginx: NGINX is open-source software for web serving, reverse proxying, caching, load balancing, media 

streaming, and more. It started out as a web server designed for maximum performance and stability. In addition 

to its HTTP server capabilities, NGINX can also function as a proxy server for email (IMAP, POP3, and SMTP) and 

a reverse proxy and load balancer for HTTP, TCP, and UDP servers33. Using the official nginx docker image as a 

web server for the adaptive streaming has allowed a simple installation and a really good performance, being 

designed for streaming, and having specific configuration options for it. 

The previous image shows the Swagger interface generated by Fast API and exposed to be used by any developer 

trying to understand its use. The Interface is fully functional allowing the users to directly try the endpoints and 

get curl examples of the calls. The endpoints have been divided into several sections depending on the nature of 

the transformation: Transcode and publish, to generate the adaptive streaming for a video. Direct transcoding, 

for the generation of previews and audio extraction and 3D Direct transcoding for the generation of a thumbnail 

from a 3D model. 

 

                                                           
31 About FFmpeg. (2022). Retrieved 26 May 2022, from https://ffmpeg.org/about.html  
32 FastAPI. (2022). Retrieved 26 May 2022, from https://fastapi.tiangolo.com/  
33 What is NGINX? - NGINX. (2022). Retrieved 26 May 2022, from https://www.nginx.com/resources/glossary/nginx/  

https://ffmpeg.org/about.html
https://fastapi.tiangolo.com/
https://www.nginx.com/resources/glossary/nginx/
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Figure 53: Transcoder Swagger Interface. 

5.3.2 IPFS as Media Asset Storage 

IPFS is one of the cutting-edge technologies to build web 3.0, it offers the ability to store files in a decentralized 

way, and it establishes possibilities for creating private networks and provides communication protocols 

between nodes. Although there is no version tested in production environments yet, the development is very 

advanced and many of the functionalities are already mature enough to rely on this technology. 

IPFS works as follows: When a user adds a file to IPFS, the file is split into smaller chunks, cryptographically 

hashed, and given a unique fingerprint called an asset identifier (CID). This CID acts as a permanent record of the 

user’s file as it exists at that point in time. When other nodes look up the file, they ask their peer nodes who's 

storing the asset referenced by the file’s CID. When these other nodes view or download the file, they cache a 

copy — and become another provider of the asset file until their cache is cleared.34 These features made us think 

of IPFS as a perfect candidate for sharing single file representations of assets between nodes. Initial satisfactory 

tests have been carried out for the integration of this technology with the transcoder (video upload, player 

reproduction), but there is not yet a definitive solution integrated with the platform. 

5.4 Asset Adaptation 

Some of the services for asset adaptation have been designed to be delivered from a single container. For others 

it makes more sense to treat them differently. This section will explain in detail which implementations have 

been tested for each type of asset, the achievements reached, and the possibilities and next steps that have 

been discovered looking at the final version of the platform. 

                                                           
34 IPFS Powers the Distributed Web. (2022). Retrieved 26 May 2022, from https://ipfs.io/#how  

https://ipfs.io/#how
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5.4.1 Text Files 

Although text files do not seem to be a very relevant component for a media platform, they will serve different 

purposes within MediaVerse. Therefore, it has been necessary to create functionalities for them. Three types of 

text files have been considered as possible to create an asset: 

 .srt: Will be the main file extension to store subtitles and then associate them to the corresponding 

videos 

 .json and .xml: Will be used by external authoring tools to save the configuration of a project and Link a 

Media verse project to them. Also provide the platform with a tool to save/search/edit systems 

configurations and share them with related professionals. 

In this context, the processing of these types of files will consist in the integration of a simple text editor in the 

interface, compatible with these three types of files. 

5.4.2 Audio 

Although there are no specific compression tasks specifically designed for audio files within the project, audio 

files are part of the framework that are used daily in professional media environments. Therefore, the platform 

will have to offer the possibility to store and provide audio assets. Consequently, the transcoding service will 

offer an endpoint with the ability to include automatically the platform’s own audio watermark to show the 

assets to non-owner users. 

Based on the research of the different codecs available, it was decided that OPUS would be the one used for this 

purpose, since it is currently compatible with all modern browsers, it is an open-source alternative, and it has 

the best quality/bandwidth ratio compared to less innovative codecs (Figure 54). 

 

Figure 54: Opus codec quality comparison. 
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5.4.3 Video 

Video optimization fundamentals and implementation examples 

All video assets we consume come in package files called containers (Figure 55). Containers act as a wrapper for 

several streams: video, audio, subtitles, metadata each one of them compressed using different codecs.  

 

Figure 55: Container format. 

Figure 56 represents a real example of the streams and metadata contained in an mp4 file obtained using the 

ffprobe tool used in the transcoder service: 

 

Figure 56: Metadata extracted from a video container. 

As the potential users of MediaVerse are professional users, it is expected that the video files they upload to the 

platform will be of high quality and length. This will result in large container files that cannot be digested by all 

types of device or viewed quickly. This is where the necessity of using video transcoding arises to enable adaptive 

streaming. 
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Video transcoding consists of subjecting the files to four different processes (Figure 57)35: 

1. Transcoding: changing the video or audio codec of the internal streams. 

2. Transmuxing: changing the container format. 

3. Transrating: changing the bitrate using different profiles of the same codec. 

4. Transsizing: creating several versions for different screen resolutions. 

 

Figure 57: Transcoding processes. 

Once the video files have the proper specifications, they are divided into pieces of a few seconds called chunks, 

to be optimally transmitted over different network capabilities and client devices (Figure 58). All the information 

related with the location, timing and specifications of the streams contained in these chunks is collected in a 

manifest file. These manifest files are what media players digest to play the adaptive streaming. The two main 

protocols used in the industry for this purpose are: HLS and DASH 

 

Figure 58: Chunks and Manifest file creation. 

The first version of the transcoder uses HLS as it was more convenient to implement a solution compatible with 

all types of devices. However, testing is also being done using DASH, as it offers more compatibility in certain 

aspects with the modern codecs we want to use. Once both solutions have tested, we will choose the one that 

best responds in the context of the player selected for the interface (video.js). 

                                                           
35 GitHub - leandromoreira/ffmpeg-libav-tutorial: FFmpeg libav tutorial - learn how media works from basic to transmuxing, 
transcoding and more, 2022 
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One of the most important decisions that had to be made regarding video quality was the Bitrate and resolution 

for each of the video qualities offered in the interface. To decide on this, video file manifest files were collected 

from the main telecom operators in Spain: Orange, Vodafone, from some CDN providers: Kaltura, and compared 

with the qualities offered by some of the most known video streaming providers: Prime video, Netflix, Youtube. 

Manifest files provided by YouTube are not provided in clear from the platform to customers. Therefore, to 

extract this information we used a script created using pytube36. Table 26 shows a comparison of what YouTube 

is doing for a standard video, and a very popular video. 

Table 26: YouTube popular video Adaptive Streaming Qualities. 

TYPE CONTAINER RESOLUTION FPS VIDEO CODEC AUDIO CODEC BITRATE (MBPS) 

AUDIO mp4 None None None mp4a.40.5 0,0501 

AUDIO webm None None None opus 0,056317 

VIDEO mp4 144p 25 av01.0.00M.08 None 0,0745 

AUDIO webm None None None opus 0,07594 

VIDEO 3gpp 144p 6 mp4v.20.3 mp4a.40.2 0,0825 

VIDEO mp4 144p 25 avc1.4d400c None 0,0957 

VIDEO webm 144p 25 vp9 None 0,096653 

AUDIO mp4 None None None mp4a.40.2 0,1306 

AUDIO webm None None None opus 0,151267 

VIDEO mp4 240p 25 av01.0.00M.08 None 0,1622 

VIDEO webm 240p 25 vp9 None 0,215869 

VIDEO mp4 240p 25 avc1.4d4015 None 0,2221 

VIDEO mp4 360p 25 av01.0.01M.08 None 0,339651 

VIDEO webm 360p 25 vp9 None 0,396523 

VIDEO mp4 360p 25 avc1.4d401e None 0,4122 

VIDEO mp4 360p 25 avc1.42001E mp4a.40.2 0,5007 

VIDEO mp4 720p 25 avc1.64001F mp4a.40.2 0,5770 

VIDEO mp4 480p 25 avc1.4d401e None 0,5940 

VIDEO mp4 480p 25 av01.0.04M.08 None 0,609982 

                                                           
36 pytube — pytube 12.1.0 documentation. (2022). Retrieved 26 May 2022, from https://pytube.io/en/latest/  

https://pytube.io/en/latest/
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VIDEO webm 480p 25 vp9 None 0,668969 

VIDEO mp4 720p 25 avc1.4d401f None 1,0264 

VIDEO mp4 720p 25 av01.0.05M.08 None 1,226444 

VIDEO webm 720p 25 vp9 None 1,311463 

VIDEO mp4 1080p 25 av01.0.08M.08 None 2,250562 

VIDEO webm 1080p 25 vp9 None 2,646248 

VIDEO mp4 1080p 25 avc1.640028 None 2,9915 

The most remarkable features that YouTube has chosen for a not too popular video are: Provide both versions 

of containers with embedded audio + video and versions with separate audio and video. Use mainly codecs with 

high compatibility: .h264 and .mp4. Moreover, for a popular video, YouTube spends more computing power to 

generate many more versions using more modern codecs. VP9, AVC1  

The data for the rest of the suppliers analyzed will not be shown here, but in general the approach is the same. 

Adds several versions, with the same codec, generally h264 due to compatibility. 

Given the data analyzed above, it was decided that the objective for the video qualities to be offered by the 

transcoder would be as follows in Table 27: 

Table 27: Target qualities for the transcoder service. 

TYPE CONTAINER RESOLUTION FPS VIDEO CODEC AUDIO 

CODEC 

BITRATE (MBPS) 

AUDIO mp4 None None None mp4a.40.5 0,0501 

AUDIO mp4 None None None mp4a.40.2 0,1306 

VIDEO mp4 240p 24 av01.0.00M.08 None 0,1364 

AUDIO webm None None None opus 0,1438 

VIDEO webm 240p 24 vp9 None 0,1685 

VIDEO mp4 240p 24 avc1.4d400d None 0,1894 

VIDEO webm 360p 24 vp9 None 0,3087 

VIDEO mp4 360p 24 avc1.4d4015 None 0,4759 

VIDEO mp4 480p 24 av01.0.04M.08 None 0,5304 

VIDEO mp4 360p 24 avc1.42001E mp4a.40.2 0,5507 

VIDEO webm 480p 24 vp9 None 0,5684 
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VIDEO webm 720p 24 vp9 None 1,1336 

VIDEO mp4 1080p 24 av01.0.08M.08 None 1,7207 

VIDEO mp4 720p 24 avc1.64001F mp4a.40.2 1,7396 

VIDEO mp4 720p 24 avc1.4d401f None 1,8292 

VIDEO webm 1080p 24 vp9 None 2,0172 

VIDEO mp4 1080p 24 avc1.640028 None 3,2762 

VIDEO webm 1440p 24 vp9 None 6,7398 

VIDEO mp4 1440p 24 av01.0.12M.08 None 6,0961 

VIDEO webm 2160p 24 vp9 None 13,3851 

VIDEO mp4 2160p 24 av01.0.12M.08 None 13,4839 

Figure 59 shows an example of the output of the transcoding service, master manifest files and the video chunks 

generated by the MediaVerse video transcoder for a 4K Input file. 

 

Figure 59: transcoder service HLS Output. 

Figure 60 shows an example of the asset of the stream manifest files and the .ts files. 
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Figure 60: transcoder service chunks Output. 

Figure 61, where the asset is tested directly on the platform, depicts the result of this processing. Versions with 

very good visual quality and for all types of devices and network connections are available. 

 

Figure 61: MediaVerse Player reproducing an Adaptive Streaming Video Created with the transcoder service. 

5.4.4 360 Video 

There are two approaches in the project for processing 360-degree video. The first one aims to support flat 360-

degree video by the implemented transcoding service, also creating accessible versions for all types of devices. 

It has been possible to create a video pipeline like the one described above using different qualities and 

configurations, adapted to 360-degree videos, with streams ranging from 3Mbps to 30Mbps. The problem with 

this approach is that unless the network quality is excellent, using for example a 5G infrastructure, the network 

will not be able to support multiple users playing 3Mbps to 30Mbps streams. 

In this context, the second approach to 360-degree video is proposed, involving the cutting edge OMAF 

specification to solve this problem and generate 360-degree video assets rendered from the server and 

optimized by dividing the 360-degree spheres into several tiles. 
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5.4.5 3D Models 

Supporting 3D assets is not one of the usual tasks of a transcoding server. However, since this project intends to 

integrate all kinds of assets, the first steps have been taken to be able to generate useful transformations for the 

interface also from this module. In this case, an endpoint has been developed to generate Thumbnails through 

3D models. This service intends to evolve to be able to show a rotating GIF file from a model. 

To this end, different challenges had to be overcome: 

 There were no native tools that provided this service automatically with an external library. 

 Software libraries dedicated to model processing require a graphical interface. 

 The position of the camera, the3D model and the lights must be automatically calculated so that very 

different types of 3D mesh are displayed on the screen. 

To solve these problems, the library Panda3D was chosen, which is an open-source, free-to-use 3D engine made 

for the development of Realtime 3D games, visualizations, simulations, experiments. It consists of a library of 

subroutines that can be used with either the Python or C++ programming language, as well as a few tools to 

assist with development and debugging.37 The models are rendered using Panda3D on a virtual framebuffer X 

server, installed on the CentOS host: XVFF38. Finally, the XVFB wrapper: pyvirtualdisplay39 has been used to run 

the virtual window from the Python code. Figure 62 shows the result of the transformation, presenting a real 

example, in which a relatively complex 3DModel has been processed, and is correctly textured and illuminated. 

 

Figure 62: Transcoder Thumbnail created from a .glb 3DModel. 

 

                                                           
37 Panda3D Manual — Panda3D Manual. (2022). Retrieved 26 May 2022, from https://docs.panda3d.org/1.10/python/index  
38 XVFB. (2022). Retrieved 26 May 2022, from https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml  
39 GitHub - ponty/PyVirtualDisplay at 3.0. (2022). Retrieved 26 May 2022, from 
https://github.com/ponty/pyvirtualdisplay/tree/3.0  

https://docs.panda3d.org/1.10/python/index
https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://github.com/ponty/pyvirtualdisplay/tree/3.0
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5.5 Improved 360-degree Transcoding 

Videos and images produced with 360-degree cameras can result in different video and image formats and 

projections, depending on the type of camera and methods to merge the individual camera captures (the process 

is also known as stitching). While the scope of MediaVerse excludes stitching as a provided adaptation service, 

we want to give future users the opportunity to use their uploaded high-quality 360-degree video for web-based 

consumer facing products by implementing an advanced method for adaptive streaming that enables high 

quality output while optimizing used bandwidth. 

Since a 360-degree camera captures the whole sphere, it also needs to be presented to the viewers in full 

dimensions and resolutions. This requires high throughput networks, as for simple streaming in equirectangular 

formats, the base resolution needs to be at least 1440p to provide an adequate output resolution for an average 

field of view (FoV) of 60 degrees. The corresponding horizontal resolution would be 240 pixels at the visual 

equator in that case. 

ISO/IEC 23090-2 Omnidirectional Media Format (OMAF): is an MPEG standard for the storage and delivery 

format of 360-degree content (Figure 63). It features a tile-based High Efficiency Video Coding (HEVC) approach. 

An equirectangular or cube map projection 360-degree video is further split into viewport-dependent tiles of 

different resolution. This ensures that the main view direction is streamed in a high resolution without wasting 

too much bandwidth on the non-visible parts. 

 

Figure 63: Parameters for FoVeated optimisation and segmentation of 360-degree content using OMAF. 

5.5.1 Transformation-as-client Architecture 

There are several options to store and access intermediate and final results from adaptations. One approach is 

to design services that inversely operate on the DAM API only to request original media and provide adaptations. 

Integration 

The design approach for the MediaVerse OMAF transcoder is essentially a wrapper for configuration and file 

management around an existing implementation for the actual worker. The worker is the experimental OMAF 
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file creation tools implementation40 by Fraunhofer HHI41. It creates 24 viewport streams that are streamed based 

on a viewers’ quaternion42. 

A user wanting to use the MediaVerse OMAF transcoder can log in with their credentials from an associated (or 

selectable) MV node. This allows for optimal flexibility, as the computing intensive OMAF transcoder can cater 

to multiple MV nodes. Once a user is authenticated, they can query MV node projects or suitable assets for being 

transcoded. An analyser component obtains data from the input file that is needed to start the OMAF conversion 

with suitable parameters, such as a total number of raw frames available for a conversion. Temporary files and 

the result are kept on a local storage, as computing performance and storage volume requirements are high. 

The output result is a manifest file and a multi-level folder structure containing all the encoded video fragments. 

As such, it cannot be simply uploaded as a single asset into the DAM. A solution is to upload a manifest file as a 

text file into the DAM. This text file contains information about the manifest URL, its data type, and additional 

information. It should be considered for future improvements, that there should be an asset type available to 

cater to such tools that are producing such multi-file output of a transformation. 

 

Figure 64: Overview of a transformation client using the OMAF transcoder as an example. 

Internal Architecture 

The MediaVerse OMAF transcoding service consists of a Phoenix/Elixir web application and a PostgreSQL 

database provided as a containerized service using Docker. It can be deployed standalone as a service to produce 

OMAF compliant adaptive streaming 360-degree video using GitHub and Google as authentication methods (can 

be extended to other OAuth2 compliant IDPs), as well as allowing to log in using a specified MediaVerse node. 

Container: The transcoding service is based on a headless (non-GUI) Debian image, as it offers all necessary tools 

and libraries compatible to the Elixir/Phoenix versions we are using. Besides common packages for building and 

running the applications, most notably ffmpeg is needed to support the video analysis. The OMAF file creation 

tool requires Python 2.7 and several encoder and projection tools that come as compiled static binaries as a 

dependency of the MediaVerse OMAF transcoder repository. 

                                                           
40 https://github.com/fraunhoferhhi/omaf.js/tree/master/omaf-file-creation 
41 https://github.com/fraunhoferhhi/omaf.js 
42 https://en.wikipedia.org/wiki/Quaternion  

https://github.com/fraunhoferhhi/omaf.js/tree/master/omaf-file-creation
https://github.com/fraunhoferhhi/omaf.js
https://en.wikipedia.org/wiki/Quaternion
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Elixir/Phoenix: Elixir is a dynamic, functional language for building scalable and maintainable applications43. We 

are using the current version 1.13. Phoenix is a web framework for the Elixir programming language based on 

the common MVC paradigm and is used in version 1.6.6. It uses a database to persist information on users, files, 

and jobs. All routes are protected and require a logged in account. The application consists of several modules 

described in the following paragraphs. 

DAM client: The DAM client is a module is used to interface with a MediaVerse node, query projects and assets 

and upload the manifest files for the result of a transformation. 

Analyser module: The analyser module is a wrapper for ffmpeg/ffprobe to obtain parameters for further 

processing. Since the video is transformed into raw video, it is crucial to obtain the number of frames available 

from the compressed video. This is achieved through calling ffprobe or avmediainfo commands. Using the 

obtained framerate, one can use ffmpeg to convert the video source into a raw video (YUV) file: 

Worker module: With the dimension parameters set and the numbers of frames available, the OMAF file 

creation tool (using a python wrapper) can be called by the worker module. The worker module is a wrapper for 

the OMAF file creation tool script, written in Python. It uses parameters obtained by the analyser that are 

required.  

                                                           
43 https://elixir-lang.org/    

https://elixir-lang.org/
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6 Conclusion 

This deliverable reported on the output of research and development tasks focusing on the intelligent analysis, 

retrieval and management of MediaVerse assets.  

The media annotation tool can produce accurate text annotation for any kind of media. The annotations not only 

describe objects present in the contents but also the actions happening, and the faces depicted if those 

correspond to celebrities. This maps content into the same space where the eventual query for looking for 

content is made, i.e., the text space, where the problem is reduced to a text search. Image annotation has been 

performed on tasks including Meme detection, Action recognition, Disturbing content detection. MemeTector 

achieved superior performances compared to fine-tuned classification models as ViT, EfficientNetB5. ResNet152 

has been trained on Kinects400 to perform action recognition on static images. For Video annotation, the work 

primarily focused on Action recognition. Though TimeSformer was initially chosen as the best model (in terms of 

produced tags and time consumption), it raised ONNX deployment issues, therefore Slowfast was chosen. To 

provide the video with further useful information, temporal segmentation methods were used to select key 

frames and apply image annotation methods on them. Given the difficulties associated to 3D content annotation 

task, it was split in two sub tasks: 3D object annotation and 3D scene annotation. For each of these, a Multiview 

approach has been employed taking advantage of ANN already deployed for image annotation. Because of the 

absence of a suitable dataset, results are presented visually in a qualitative fashion. The proposed approach is 

able to detect concepts in the scene. Several services have been evaluated to enable non-AI-experts to build 

their own models for niche tasks pertinent to their work. In terms of graphics and analytics provided to the user, 

the directions of DeepVA and Tensorflow’s Deep Playground seem appealing. The media annotation service 

exposes a gRPC API which has, in addition to the bidirectional streaming endpoint discussed in D3.1, three unary 

RPC, ImageAnnotation, ThreeDAnnotation and VideoAnnotation, responsible for annotating images, 3D assets 

and videos respectively. 

The Cross-Modal Retrieval system leverages the CLIP large scale model and Faiss to speed up similarity search of 

both retrieval and recommendation systems. CLIP encoders are trained to embed asset from different media 

types into a joint semantic space where they can be directly compared. This allows us to conduct extensive 

evaluation of our CMR system in terms of similarity measures (cosine, L2-norm, dot-product). Our experiments 

are conducted on MSCOCO validation split of 2014 where CLIP achieves R@10 values of 0.889 for the tasks of 

Image retrieval and 0.910 on text retrieval. The complete CMR system, which also includes the fast vector search 

module Faiss, is able to retain these values of recall while speeding up the search process from 129.31 up to 0.72 

ms (searching in a database of 5000 assets). Since the module is designed to deal with texts and images, satisfying 

both cross-modality and uni-modality searches, it can very well be used in conjunction with the annotation 

services (described in section 2) which generate semantic textual tags for different data types that can, 

subsequently, be used as inputs of CLIP text encoder. The CMR system is by default designed to return a fixed 

number of results in response to his query, however, a more advanced selection criterion is explored in Section 

3.6, where the number of results is decided dynamically based on relevance of the asset to the query. However, 

as CLIP is likely to be applied in a wide variety of scenarios the proposed similarity thresholds must be validated 

over a larger number of datasets. 

The recommendation system leverages the available knowledge about such as the asset that has been of interest 

in the past (for example by what has been searched or posted by the user). This asset, both texts and images, 

represented in a multidimensional space obtained with the CLIP encoder are then grouped with HDBSCAN 

technique each time a recommendation is requested, and then a maximum of three seeds are selected, therefore 
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limiting the subjects of the output (and thus the diversity). The system has been studied utilizing diversity as 

performance indicators. Experiments have been run on a monitored environment, which allowed us to map user 

posted contents to macro topics, each identified as a theoretical cluster against which we expect consistency 

from the recommender system. The user seeds, generated from previous contents posted by the user, have been 

proved to be - qualitatively – able to retrieve contents semantically related to user interests. A quantitative 

analysis has been performed on the system capability to return a certain degree of diversity among 

recommended contents. Given the parametric nature of the diversity, the recommendation system controls the 

diversity by changing the fraction of recommended asset returned from a random outlier. It was shown that the 

parameters of the system have limited influence on the range of values of the diversity that remains between 

0.80 and 0.99. 

Finally, the Content Adaptation framework supports the ingestion, manipulation, and sharing of the content for 

all media type supported optimizing the data format so that both the most modern networks technologies, i.e., 

5G, can be fully taken advantage of and the content can be delivered in a real-time fashion.  
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